1st order non-linear differential equations

- Understand the "mechanics" by looking at simple example for least number of variables.
- One dimensional ie: only one q, system has potential V(q).
- 1st order differential equation.
- Non-linear.
- Then look at more complicated systems.

Two possibilities – deterministic, ie: given $q(t = t_0)$ at some t_0 we have an equation that uniquely determines q(t) for all subsequent *t*. Only need to look at one trajectory.

- Stochastic – equation contains terms that are only known <u>statistically</u> (ie, due to random noise). Need to look at an ensemble of trajectories.

Deterministic

Consider example (but this method will solve any 1D ODE)

$$\frac{dq}{dt} = \alpha q - \beta q^3 \qquad \begin{array}{c} \alpha, \beta \text{ constant} \\ \beta > 0 \end{array}$$

This is a simple model for:-

1)	population dynamics	q(t)	=	population density
		α	=	initial growth rate (eg: birth rate)
		eta	=	saturation term – hinders growth when
				population density is high.

- this is a simple model – could replace βq^3 by something more realistic

2) material in strong *E* field

$$\nabla \wedge \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

for *B* uniform $\mathbf{J} = -\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

usually in EM assume linear response of media.

 $\mathbf{J} = \sigma \mathbf{E} \quad \sigma \text{ constant}$: Ohm's Law.

Nonlinear response $\sigma = \sigma_0 + \sigma_1 E^2 \Rightarrow \frac{\partial E}{\partial t} = \alpha E - \beta E^3$

3) single mode laser $q \propto I$ intensity of coherent radiation $\alpha \equiv$ energy input (incoherent radiation) $\beta \equiv$ energy losses Use example to introduce <u>linear stability analysis</u>

$$\frac{dq}{dt} = \alpha q - \beta q^3 \qquad \qquad \text{consts: } \beta > 0 \text{, all } \alpha$$

Step 1:

seek time in dependent solutions "fixed points" \overline{q} NB: not necessarily equilibria

here $\frac{d\overline{q}}{dt} = 0$ ie $\alpha \overline{q} - \beta \overline{q}^3 = 0$ or $\overline{q} \left(\alpha - \beta \overline{q}^2 \right) = 0$ then $\overline{q} = 0$ $\overline{q} = \pm \sqrt{\frac{\alpha}{\beta}}$ $\alpha > 0, \beta > 0$ $\overline{q} = \pm i \sqrt{\frac{|\alpha|}{\beta}}$ $\alpha < 0, \beta > 0$

but insist \overline{q} real in our model.

Then $\overline{q} = 0$, $\overline{q} = \pm \sqrt{\frac{\alpha}{\beta}}$ roots both real $\alpha > 0$ (all $\alpha, \beta > 0$), $(\alpha > 0, \beta > 0)$

<u>Step 2</u>

Examine stability of fixed points. Look in vicinity of \overline{q} , ie: $q(t) = \overline{q} + \delta q(t)$ $\overline{q} = \text{const}$ δq small sub in original equation

$$\frac{d}{dt}(\delta q) = \alpha (\overline{q} + \delta q) - \beta (\overline{q} + \delta q)^{3}$$
$$= \alpha (\overline{q} + \delta q) - \beta (\overline{q} + \delta q) (\overline{q}^{2} + 2\overline{q}\delta q + \delta q^{2})$$
$$= \alpha (\overline{q} + \delta q) - \beta (\overline{q}^{3} + 3\overline{q}^{2}\delta q + 3\overline{q}\delta q^{2} + \delta q^{3})$$

can write

$$\frac{d}{dt}(\delta q) = \left(\alpha \overline{q} - \beta \overline{q}^3\right) + \delta q \left(\alpha - 3\beta \overline{q}^2\right) + 0 \left(\delta q^2\right)$$

^

Linearize, ie: assume terms $0(\delta q^2) \ll 0(\delta q)$ behaviour is roughly linear if δq is small enough, then $\frac{d}{dt}(\delta q) = \delta q (\alpha - 3\beta \overline{q}^2) = \eta \delta q$

- this linear equation much easier to solve than original nonlinear equation for q(t).

 $\frac{d}{dt}(\delta q) = \eta \delta q \text{ has solution } \delta q(t) = \delta q_0 e^{\eta t}$ where δq_0 - integration constant ie: $\delta q(t=0) = \delta q_0$

Now two possibilities:

PX391 Nonlinearity, Chaos, Complexity SUMMARY Lecture Notes 4-S C Chapman

 $\delta q(t) \to 0 \text{ as } t \to \infty$ hence $q(t) \to \overline{q}$ stable $\delta q(t) \to \infty$ as $t \to \infty$ $q(t) \to \infty$ unstable

So, if any small perturbation is introduced when system is at \overline{q} stable fixed point – stays there $(\rightarrow \overline{q})$ unstable fixed point – moves away.

Real system (with fluctuations) will not be found at unstable fixed points – but tends to move towards stable fixed points once in vicinity.

NB: "in vicinity" means when $q = \overline{q} + \delta q$, $\delta q > \delta q^2$ (ie: linearization). Procedure is not valid for all q(t), ok if near stable fixed point $(\delta q \to 0)$, fails as system moves away from unstable fixed point $(\delta q \to \infty)$.

BUT identifies nature of fixed points.

So, for our system
$$(\beta > 0)$$

 $\eta = \alpha - 3\beta \overline{q}^2$

then for $\overline{q} = 0$ $\eta > 0$ $\alpha > 0$ unstable $\eta < 0$ $\alpha < 0$ stable for $\overline{q} = \pm \sqrt{\frac{\alpha}{\beta}}$ $\eta = \alpha - 3\alpha = -2\alpha$ stable $\alpha > 0$

Stable fixed points:

- Exactly the form obtained for M(T) for 2nd order phase transition

Phase plane analysis (for ID system)

Linearization is only locally correct (ie: close enough to \overline{q}) seek <u>global</u> information. Phase plane analysis (Poincaré).

Write
$$\frac{dq}{dt} = H(q) \equiv \alpha q - \beta q^3$$

Now sketch H(q)

mark with arrows.

Then for $\alpha < 0$ arrows always $\rightarrow q = 0$ - long time behaviour of q(t) is $\rightarrow q = 0$ independent of initial q(t = 0), q = 0 is attractor.

For $\alpha > 0$ - two possibilities.

If initially q(t=0) > 0, q will move towards $\overline{q} = +\sqrt{\frac{\alpha}{\beta}}$.

with time

If initially q(t = 0) < 0, q will move towards $\overline{q} = -\sqrt{\frac{\alpha}{\beta}}$

This is the <u>global</u> property, ie: true for any q; consistent with linearization result.

Similarly, $\alpha > 0$ has q = 0 as a repellor – linear theory $\rightarrow q(t)$ will grow away from $\overline{q} = 0$ exponentially with *t*.

Phase plane analysis $\Rightarrow q(t)$ will subsequently be attracted to $\overline{q} = \pm \sqrt{\frac{\alpha}{\beta}}$

{which sign depends on fluctuations in starting q(t=0), ie: $q(t=0) = 0 + \varepsilon$, ε vanishingly small} – on sign of ε - 'sensitivity to initial conditions' – a trivial example. <u>NOT</u> chaos: this arises later in ID maps (difference equations). For differential equations we will see that 3⁺D phase space is needed for chaos.

So have all behaviour of q(t) without solving D.E. – at most needed to solve algebraic equations. All this (linearization, phase plane analysis) extends to higher dimensions. We will do 2D next.

SUMMARY: Technique for not solving nonlinear DE -

Any
$$\frac{dq}{dt} = H(q)$$

- 1. Look for fixed points $H(\overline{q}) = 0$.
- 2. Linearize put $q = \overline{q} + dq$ in $\frac{dq}{dt} = H(q)$, neglect terms $0(\partial q^2)$ gives $\frac{d\delta q}{dt} = \eta \delta q$ and $\eta = \eta(\overline{q})$.
- 3. Classify the \overline{q} according to sign of $\eta(\overline{q})$.
- 4. Sketch phase plane, ie: $\frac{dq}{dt} = H(q) vz q$, obviously if H(q) > 0 q increases with *t*; H(q) < 0 q decreases

 \rightarrow this yields full global dynamics – no actual integration of $q = \int H(q) dt$