2nd order non-linear DE - Pendulum

Generalize what was done for ID, 1st order nonlinear DE - non- trivial differences.
Start by considering a familiar example: pendulum

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \sin \theta=0
$$

with linear equation

$$
\begin{array}{ll}
\frac{d^{2} \theta}{d t^{2}}+\omega^{2} \theta=0 & \text { for } \sin \theta \simeq \theta, \text { ie: small perturbations about rest } \\
& \text { position } \theta=0
\end{array}
$$

$$
\text { - oscillates } \quad \theta=A e^{i \omega t} \quad \omega^{2}=\frac{g}{L} .
$$

How to deal with $2^{\text {nd }}$ order DE? Write as two coupled $1^{\text {st }}$ order DEs:
$y=\frac{d \theta}{d t}, \quad \frac{d y}{d t}=-\omega^{2} \sin \theta$
Now we can find fixed points, linearize as before.
Fixed points $\quad \bar{y}=0, \quad \sin \bar{\theta}=0$ or $\bar{\theta}=n \pi \quad n=-3,-2,-1,0,1,2 \ldots$.

Stability/Classification

Linearize, we write

$$
\begin{aligned}
& y=\bar{y}+\delta y(t)=\delta y \\
& \theta=\bar{\theta}+\delta \theta(t)=n \pi+\delta \theta
\end{aligned}
$$

with $\delta y, \delta \theta$ small. Then linearized equations are:

$$
\begin{aligned}
& \frac{d \delta \theta}{d t}=\delta y \quad \frac{d \delta y}{d t}=-\omega^{2}(-1)^{n} \delta \theta \\
& \operatorname{since} \sin (n \pi+\delta \theta)=\sin (n \pi) \cos \delta \theta+\cos n \pi \sin \delta \theta \\
& \\
& \quad \cos (n \pi)=(-1)^{n} \\
& \sin \delta \theta \approx \delta \theta
\end{aligned}
$$

don't know behaviour of $y(\theta)$ yet.

Now, can write:

$$
\frac{d^{2} \delta \theta}{d t^{2}}=-\omega^{2}(-1)^{n} \delta \theta
$$

- the linearized $2^{\text {nd }}$ order ODE. There are 2 possibilities:
n even

$$
\begin{array}{r}
\frac{d^{2} \delta \theta}{d t^{2}}=-\omega^{2} \delta \theta \quad \delta \theta=A e^{i \omega t}+B e^{-i \omega t} \\
\quad \text { oscillatory solution }
\end{array}
$$

$\underline{n \text { odd }} \quad \frac{d^{2} \delta \theta}{d t^{2}}=+\omega^{2} \delta \theta \quad \delta \theta=A e^{\omega t}+B e^{-\omega t}$

- behaviour depends on the integration consts A, B
$\delta y ? \quad \delta y=\frac{d(\delta \theta)}{d t}$
n even

$$
\begin{gathered}
d y=i \omega A e^{i \omega t}-i \omega B e^{-i \omega t}=\omega A e^{i(\omega t+\pi / 2)}+\omega B e^{-i(\omega t+\pi / 2)} \\
i=e^{i \pi / 2},-i=e^{-i \pi / 2} \\
\text { ie: out of phase } \pi / 2 \text { with } \delta \theta \\
\text { oscillatory - about centre fixed point. }
\end{gathered}
$$

n odd

$$
\begin{aligned}
& \delta y=\omega A e^{\omega t}-\omega B e^{-\omega t} \\
& \delta \theta=A e^{\omega t}+B e^{-\omega t}
\end{aligned}
$$

this is either attracted or repulsed from fixed point.

Consider all possible combinations of signs of A, B - four possibilities:

to make phase plane diagram (global solution) we need some global properties.
Will now do a sketch in y, θ phase plane.
Global properties for the pendulum:

Constant of the motion:

Equation of motion

$$
\frac{d^{2} \theta}{d t^{2}}+\omega^{2} \sin \theta=0
$$

can integrate once

$$
\frac{d \theta}{d t} \frac{d^{2} \theta}{d t^{2}}+\omega^{2} \sin \theta \frac{d \theta}{d t}=0
$$

$$
\begin{aligned}
& \times \frac{d \theta}{d t} \\
& \qquad \frac{1}{2}\left(\frac{d \theta}{d t}\right)^{2}-\omega^{2} \cos \theta=E \underline{\text { or }} \frac{y^{2}}{2}-\omega^{2} \cos \theta=E
\end{aligned}
$$

Also symmetry property:

$$
\begin{aligned}
& \theta \rightarrow-\theta \\
& y \rightarrow-y
\end{aligned}
$$

Different IC give different E. Say we start the pendulum at rest - at θ_{0}

$$
E=-\omega^{2} \cos \theta_{0}
$$

- this is the maximum $|\theta|$ of the motion. θ is symmetric

$$
+\theta_{0}=-\theta_{0}
$$

*NB: $\quad \theta \rightarrow-\theta$ gives the same equation of motion, θ symmetry property.
Topology of y, θ plane

We have $\quad \frac{d \theta}{d t}=y \quad \frac{d y}{d t}=-\omega^{2} \sin \theta$
So $\quad \frac{d y}{d \theta}=\frac{-\omega^{2} \sin \theta}{y}$

So, unless $\quad y=0,-\omega^{2} \sin \theta=0$ (the fixed points)
$\frac{d y}{d \theta}$ is uniquely defined. This is tangent to $y(\theta)$ lines
\quad therefore, $y(\theta)$ lines cannot cross- General property.

Sketch of the phase plane

Properties of the phase plane:

- lines don't cross except at fixed points

$$
\bar{y}=0, \bar{\theta}=n \pi
$$

- $n=0, n$ even are centres (oscillatory solutions)
- n odd are saddle points

$$
E=\frac{y^{2}}{2}-\omega^{2} \cos \theta \quad \text { constant } \quad-\text { symmetric in } y, \theta
$$

$-y$ is bounded for a given θ_{0} at $y=\frac{d \theta}{d t}=0 \quad E=E_{0}=-\omega^{2} \cos \theta_{0}$

- now the separatrix corrects the saddle points, e.g. passes through $\theta_{0}=\bar{\theta}=\pi, y=\bar{y}=0$

This is the line where $E=E_{c}=\omega^{2}$, critical value of E

- critical value of E separates bonded from unbounded orbits.

$E<E_{c}$
oscillates about stable (circle) fixed point $\theta<\pi$

$$
\theta=\pi \text { unstable (saddle) fixed point }
$$

$$
E>E_{c}
$$

unbounded motion

Global behaviour obtained without integrating equation
NB : integral of $\frac{1}{2}\left(\frac{d \theta}{d t}\right)^{2}-\omega^{2} \cos \theta=E$
Can be done analytically- Jacobian Elliptic functions - look up if interested.

Another way to think of E - in terms of potential function V

$$
E=\frac{y^{2}}{2}+V(\theta) \quad V=-\omega^{2} \cos \theta
$$

If $E>E_{c}$ - unbounded motion.

This is conservative system but now also know what happens for weak damping.
'weak' \equiv on timescale $>1 / \omega$
particle slowly loses energy.
See handout for sketch
All of the above generalizes to any $2^{\text {nd }}$ order nonlinear DE- for general properties see the handout accompanying the lecture.

