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2nd order non-linear DE – Pendulum 
 
Generalize what was done for ID, 1st order nonlinear DE – non- trivial differences. 
 
Start by considering a familiar example: pendulum 
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How to deal with 2nd order DE? Write as two coupled 1st order DEs: 
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Now we can find fixed points, linearize as before. 
 
Fixed points 0, sin 0y != =  or 3, 2, 1, 0,1, 2....n n! "= =! ! !  
 
 
Stability/Classification 
 
Linearize, we write  ( )y y y t y! != + =  
    ( )t n! ! "! # "!= + = +  
 
with !y,!"  small. Then linearized equations are: 
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don't know behaviour of  ( )y !  yet. 
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Now, can write: 
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- the linearized 2nd order ODE. There are 2 possibilities: 
 
n even  
 

 
  

d
2
!"

dt
2

= #$
2
!" !" = Ae

i$ t
+ Be

# i$ t  

     oscillatory solution 
 

n odd   
  

d
2
!"

dt
2

= +#
2
!" !" = Ae

# t
+ Be

$# t  

     - behaviour depends on the integration consts A, B 
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this is either attracted or repulsed from fixed point. 
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Consider all possible combinations of signs of A, B – four possibilities: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to make phase plane diagram (global solution) we need some global properties.   
Will now do a sketch in ,y !  phase plane. 
 
Global properties for the pendulum: 
 
Constant of the motion: 
 

Equation of motion  
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Also symmetry property: 
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Saddle point: 
Separatrix has lines given by 
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Different IC give different E. Say we start the pendulum at rest – at 

0
!  2
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 - this is the maximum !  of the motion.  !  is symmetric 
      

0 0
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*NB:    !!"!  gives the same equation of motion, !  symmetry property. 
 
Topology of ,y !  plane 
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So, unless  20, sin 0y ! "= # =  (the fixed points) 
 

 dy

d!
 is uniquely defined.  This is tangent to ( )y !  lines 

  therefore, ( )y !  lines cannot cross- General property. 
 
 
Sketch of the phase plane 
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Properties of the phase plane:  
- lines don't cross except at fixed points      y = 0, ! = n"  
- 0n = , n even are centres (oscillatory solutions) 
- n odd are saddle points 
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- now the separatrix corrects the saddle points, e.g. passes through 
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This is the line where 
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- critical value of E separates bonded from unbounded orbits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Global behaviour obtained without integrating equation 

NB: integral of 
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 Can be done analytically- Jacobian Elliptic functions – look up if interested. 
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oscillates about stable (circle) fixed point ! "<  
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Another way to think of E – in terms of potential function V 
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This is conservative system but now also know what happens for weak damping. 
 
'weak' ≡ on timescale 1 / !>  
particle slowly loses energy. 
See handout for sketch 
 
All of the above generalizes to any 2nd order nonlinear DE- for general properties see the handout 
accompanying the lecture. 
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