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Limit Cycles 
 
Have found that orbits cannot cross, can be attracted to (fixed points), etc. One other possibility is 
limit cycle.  
 
ODE is 'well behaved' ie:  all derivatives exist and are continuous –  
 
Therefore, all orbits smoothly follow neighbours in phase space. 
 
One other possibility only: 
 

limit cycle → 
 
 
 
 
 
 
 
 
NB – complete description of all details is non trivial – here give the basics. 
 
 
Limit cycle – an example 
 
Consider   

   
F = x + y! x x2 + y2( ) 

    ( ) ( )2 2G x y y x y=! ! ! +  
 
Fixed point  0F G= =  is  0, 0x y= =  
 
Stability analysis     x = x + !x   y y y!= +  
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- unstable spiral 
 
In addition – to look elsewhere in phase plane, rewrite in polars 
 
 2 2 2

cos sinx r y r x y r! != = + =  
 
use following identities 
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closed curve as 
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then 
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gives 
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Integrate directly – 
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don't need to integrate r equation to see the limit cycle. 
 

 0 1
dr

r
dt
= =  for any !  (as well as 0r =  the fixed point) 

 
trajectory sits on circle 1r = . 
 

For 
( )

( )
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  by inspection. 

 
Therefore, solution is attracted to 1r =  circle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No single cast iron method to find limit cycles – see course texts for some advanced methods. 
 

y 

1r =  

x 

either attracted in from   r!"  
or out from repulsive fixed 
point at 0r =  ( )0, 0x y= =  
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Example of limit cycle – Van der Pol oscillator 
 
Van der Pol, 1926 – Electric circuit with valve (model of heatbeat) 
 
Identical to Rayleigh, 1883 – Nonlinear Vibrations 
 
1st experimentally shown limit cycle 
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  cause of trouble 
 

Write as 
    

dx

dt
= y

dy

dt
=!x ! ! x2

!1( ) y  

 
If 

   
! = 0 ! linear pendulum 1! = . 

 
Symmetries – invariant for 

    
!!"t; !!"!  

 
Therefore, solve for 0!>  
 - reverse time for 0! <  
 
ie: 0!>  growth is 0! <  damping, etc. 
 
Fixed points 
   0, 0x y= =  
 
Stability 
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F y
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or work out 
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x = x + !x

y = y + ! y
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dt
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=!!x + "! y  



PX391 Nonlinearity, Chaos, Complexity SUMMARY Lecture Notes 7- S C Chapman 
 

4 

Evaluate at , 0x y =        
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then 
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0 0 0p q!> > >  unstable and spiral if 2

4qp < . 
 
Guess there is more …. 
 
Since damping term is ( )2

1x! !  
 
this is +ve for large x   (damping) 
changes sign as    x! 1   (growth) 
is zero at 1x =   !   (neither!) 
 
Solve – multiple timescale analysis (Rowlands, appendix) 
- method of averaging (Drazin, p 193) - handout for result 
 
 
Pendulum by formula 
 
We have 
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or 
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- same thing since 
 

  
   

J =
a b

c d
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F = a!x + b! y

G = c!x + d! y
 

 
  0p a d= + =  

  
  
q = ad ! bc = "

2
!1( )

n  
So, for n even 0q >  centre,     n odd 0q < saddle (see handout) 


