PX391 Nonlinearity, Chaos, Complexity SUMMARY Lecture Notes 7- S C Chapman

Limit Cycles

Have found that orbits cannot cross, can be attracted to (fixed points), etc. One other possibility is
limit cycle.

ODE is 'well behaved' ie: all derivatives exist and are continuous —
Therefore, all orbits smoothly follow neighbours in phase space.
One other possibility only:

orbits approach

limit cycle — closed curve as

I — o0
NB — complete description of all details is non trivial — here give the basics.
Limit cycle — an example
Consider F=x+y—x(x*+)")
G=—(x—y)-y(x*+»")

Fixed point F=G=0 1s x=0,y=0
Stability analysis X=X+ 0x y=y+90oy

F=éx+d6y  adbx+bby p=a+d=2 qg=ad—-bc=2 p*<d4q

G=—6x+06y  cbx+déby p>0

- unstable spiral

In addition — to look elsewhere in phase plane, rewrite in polars
x=rcosf  y=rsin xX*+y'=r

use following identities

dx dy dr dy dx ,do
+y—=—=r— X r
dt dt dt dt dt dy
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dx

—=x+y—x(x*+)°
then jt ( )

<= lr=) =+

gives rﬂzxz+xy—x2(x2+y2>—xy+y2—yz(xz+y2)

dt
-
Zde 2 2 2 2 2 2
S +x —xy(x" + Yy ) —xy—y  +xp(x” + y7)
:—]/'2

dr
ie: —=r(l—r*) —=-1
ie 7 r(1—r?) 7
Integrate directly —

r

=0 —t¢ =
0 1+ Ae*

5 AeZt ]

don't need to integrate » equation to see the limit cycle.

dr_o

i r=1 for any 6 (as well as 7 = 0 the fixed point)

trajectory sits on circle » =1.

r>1 r(l —r? ) <0 ) )
For by inspection.
r<l1 r(l—r2)<0

Therefore, solution is attracted to » =1 circle.

y

2

P~
.

either attracted in from » — oo
or out from repulsive fixed
pointat r =0 (x =0, y =0)

No single cast iron\method to ﬁnc} limit cycles — see course texts for some advanced methods.
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Example of limit cycle — Van der Pol oscillator

Van der Pol, 1926 — Electric circuit with valve (model of heatbeat)

Identical to Rayleigh, 1883 — Nonlinear Vibrations
Ist experimentally shown limit cycle

d*x

——|—5(x2—1)@—|—x20

dr’ R dt

cause of trouble

d. d
%:y z);:—x —s(xz—l)y

Write as
If e =0 — linear pendulum w=1.

Symmetries — invariant for ¢ — —t; ¢ — —¢

Therefore, solve for £ > 0
- reverse time for € < 0

ie: € > 0 growth is € < 0 damping, etc.

Fixed points

x=0, y=0
Stability X=X+ 6x
y=y+oby
_dx _
==
e
—%——x—g(xz—l)y
or work out
OF o OF_y 99 _ oy a—G:—e(xz—l)
Ox dy Ox Oy

dbx

s
a7

doy

—= = —{bx+¢eb
” X+ ebdy
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OF o Ly &, W,

Evaluate at X,y =0 — =
Ox Oy Ox Oy

then
Ox Oy
OF 0G OF 0G

e>0 p>0 ¢g>0 unstable and spiral if p*> < 4q.
Guess there is more ....

Since damping term is (x> —1)

this 1s +ve for large x (damping)
changes sign as x — 1 (growth)
iszeroat x =1 ! (neither!)

Solve — multiple timescale analysis (Rowlands, appendix)
- method of averaging (Drazin, p 193) - handout for result

Pendulum by formula

We have
@20594-1.6)/517 0 1
dt J=
d y _ 2 _ n
Y 0 (-1)'80+05y=G 0*(-1)" 0
dt
or
dy
_:()5 —0)2 —1 59 n
dt y-o*(-1) =l 0 ~0*(-1)
do
—=10y+0 96 10
dt
- same thing since
J_| a b F =abéx+ bdy
c d G =cox+dby
p=a+d=0

q=ad—bc=w*(-1)
So, forneven g >0 centre, nodd g < 0saddle (see handout)



