Limit Cycles

Have found that orbits cannot cross, can be attracted to (fixed points), etc. One other possibility is limit cycle.

ODE is 'well behaved' ie: all derivatives exist and are continuous -
Therefore, all orbits smoothly follow neighbours in phase space.
One other possibility only:

$$
\underline{\text { limit cycle }} \rightarrow
$$

orbits approach closed curve as $t \rightarrow \infty$

NB - complete description of all details is non trivial - here give the basics.

Limit cycle - an example

Consider

$$
\begin{aligned}
& F=x+y-x\left(x^{2}+y^{2}\right) \\
& G=-(x-y)-y\left(x^{2}+y^{2}\right)
\end{aligned}
$$

Fixed point

$$
F=G=0 \quad \text { is } \quad \bar{x}=0, \bar{y}=0
$$

Stability analysis

$$
x=\bar{x}+\delta x
$$

$$
y=\bar{y}+\delta y
$$

$$
\left.\begin{array}{l}
F=\delta x+\delta y \\
G=-\delta x+\delta y
\end{array}=\begin{array}{ll}
a \delta x+b \delta y \\
c \delta x+d \delta y
\end{array} \quad p=a+d=2 \quad q=a d-b c=2 \quad p^{2}<4 q\right] \text { } \quad p>0
$$

- unstable spiral

In addition - to look elsewhere in phase plane, rewrite in polars

$$
x=r \cos \theta \quad y=r \sin \theta \quad x^{2}+y^{2}=r^{2}
$$

use following identities

$$
x \frac{d x}{d t}+y \frac{d y}{d t}=r \frac{d r}{d t} \quad x \frac{d y}{d t}-y \frac{d x}{d t}=r^{2} \frac{d \theta}{d y}
$$

then

$$
\frac{d x}{d t}=x+y-x\left(x^{2}+y^{2}\right)
$$

$$
\frac{d y}{d t}=-(x-y)-y\left(x^{2}+y^{2}\right)
$$

gives $\quad r \frac{d r}{d t}=x^{2}+x y-x^{2}\left(x^{2}+y^{2}\right)-x y+y^{2}-y^{2}\left(x^{2}+y^{2}\right)$

$$
=r^{2}-r^{4}
$$

$$
\begin{aligned}
r^{2} \frac{d \theta}{d t} & =-x^{2}+y x-x y\left(x^{2}+y^{2}\right)-x y-y^{2}+x y\left(x^{2}+y^{2}\right) \\
& =-r^{2}
\end{aligned}
$$

ie: $\quad \frac{d r}{d t}=r\left(1-r^{2}\right) \quad \frac{d \theta}{d t}=-1$
Integrate directly -

$$
\theta=\theta_{0}-t \quad\left[r^{2}=\frac{A e^{2 t}}{1+A e^{2 t}}\right]
$$

don't need to integrate r equation to see the limit cycle.

$$
\frac{d r}{d t}=0 \quad r=1 \quad \text { for any } \theta \quad \text { (as well as } \bar{r}=0 \text { the fixed point) }
$$

trajectory sits on circle $r=1$.

For

$$
\begin{array}{ll}
r>1 & r\left(1-r^{2}\right)<0 \\
r<1 & r\left(1-r^{2}\right)<0
\end{array} \quad \text { by inspection. }
$$

Therefore, solution is attracted to $r=1$ circle.

Example of limit cycle - Van der Pol oscillator

Van der Pol, 1926 - Electric circuit with valve (model of heatbeat)
Identical to Rayleigh, 1883 - Nonlinear Vibrations
1 st experimentally shown limit cycle

$$
\frac{d^{2} x}{d t^{2}}+\varepsilon\left(x^{2}-1\right) \frac{d x}{d t}+x=0
$$

Write as $\quad \frac{d x}{d t}=y \quad \frac{d y}{d t}=-x \quad-\varepsilon\left(x^{2}-1\right) y$
If $\varepsilon=0 \rightarrow$ linear pendulum $\omega=1$.
Symmetries - invariant for $\varepsilon \rightarrow-t ; \quad \varepsilon \rightarrow-\varepsilon$
Therefore, solve for $\varepsilon>0$

- reverse time for $\varepsilon<0$
ie: $\varepsilon>0$ growth is $\varepsilon<0$ damping, etc.
Fixed points

$$
\bar{x}=0, \quad \bar{y}=0
$$

Stability

$$
\begin{aligned}
& x=\bar{x}+\delta x \\
& y=\bar{y}+\delta y \\
& \longrightarrow
\end{aligned} \begin{aligned}
& \frac{d \delta x}{d t}=\delta y \\
& \frac{d \delta y}{d t}=-\delta x+\varepsilon \delta y
\end{aligned}
$$

or work out

$$
\frac{\partial F}{\partial x}=0 \quad \frac{\partial F}{\partial y}=1 \quad \frac{\partial G}{\partial x}=-1-2 \varepsilon x \quad \frac{\partial G}{\partial y}=-\varepsilon\left(x^{2}-1\right)
$$

Evaluate at $\bar{x}, \bar{y}=0 \quad \frac{\partial F}{\partial x}=0 \quad \frac{\partial F}{\partial y}=1 \quad \frac{\partial G}{\partial x}=-1 \quad \frac{\partial G}{\partial y}=\varepsilon$
then

$$
\begin{aligned}
& p=\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=\varepsilon \\
& q=\frac{\partial F}{\partial x} \cdot \frac{\partial G}{\partial y}-\frac{\partial F}{\partial y} \frac{\partial G}{\partial x}=1
\end{aligned}
$$

$\varepsilon>0 \quad p>0 \quad q>0 \quad$ unstable and spiral if $p^{2}<4 q$.
Guess there is more
Since damping term is $\varepsilon\left(x^{2}-1\right)$

this is + ve for large x	(damping)
changes sign as $x \rightarrow 1$	(growth)
is zero at $x=1!$	(neither!)

Solve - multiple timescale analysis (Rowlands, appendix)

- method of averaging (Drazin, p 193) - handout for result

Pendulum by formula
We have

$$
\begin{aligned}
& \frac{d \theta}{d t}=0 \delta \theta+1 . \delta y \equiv F \\
& \frac{d y}{d t}=-\omega^{2}(-1)^{n} \delta \theta+0 \delta y \equiv G
\end{aligned}
$$

$$
J=\left(\begin{array}{ll}
0 & 1 \\
-\omega^{2}(-1)^{n} & 0
\end{array}\right)
$$

or

$$
\begin{array}{ll}
\frac{d y}{d t}=0 \delta y-\omega^{2}(-1)^{n} \delta \theta \\
\frac{d \theta}{d t}=1 . \delta y+0 \delta \theta & J=\left(\begin{array}{ll}
0 & -\omega^{2}(-1)^{n} \\
1 & 0
\end{array}\right)
\end{array}
$$

- same thing since

$$
J=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \begin{aligned}
& F=a \delta x+b \delta y \\
& G=c \delta x+d \delta y
\end{aligned}
$$

$$
p=a+d=0
$$

$$
q=a d-b c=\omega^{2}(-1)^{n}
$$

So, for n even $q>0$ centre, n odd $q<0$ saddle (see handout)

