Predator - prey problem

Lotka-Volterra equations the adriatic Lotka (1920) - chemical reactions

$$
\begin{array}{ll}
\frac{d R}{d t}=(\lambda-\alpha F) R & \mathrm{~F}=\text { foxes } \\
\mathrm{R}=\text { rabbits } \\
\frac{d F}{d t}=-(\eta-\beta R) F &
\end{array}
$$

hence rabbit growth rate $\left(\frac{d R}{d t}\right)$ is constant $\times R \quad \lambda R$ in absence of foxes (birth).
(α grass assumption)
rabbits are eaten at rate α foxes and rabbits, ie: $\alpha F R$.
Similarly, growth of foxes depends on number of foxes (birth) and rabbits (food) $\quad \beta R F$
and is adversely affected by other foxes (competition)
so $\quad \lambda, \alpha, \eta, \beta>0$.

As usual find fixed points

$$
\begin{aligned}
& \bar{R}=0, \bar{F}=0 \\
& \bar{R}=\frac{\eta}{\beta} \bar{F}=\frac{\lambda}{\alpha}
\end{aligned}
$$

look at stability: (done on problem sheet 2)

$$
\bar{R}=0, \bar{F}=0 \quad \text { saddle }
$$

Find:

$$
\bar{R}=\frac{\eta}{\beta} \bar{F}=\frac{\lambda}{\alpha} \quad \text { centre }
$$

Note $R>0$ $F>0$
only physically meaningful solutions!

NB: Centre \Rightarrow structural instability;
eg: consider the topology:

Therefore, centre based mathematical models NOT a good idea for physical, biological systems.

Instead, consider models with limit cycle dynamics- won't be affected by fluctuations

Lotka-Volterra - motion about centre implies a constant of the motion

As with nonlinear pendulum - expect in principle that system behaves like particle in a potential well - means should be able to integrate to obtain a constant of the motion.

We have

$$
\frac{d R}{d t}=(\lambda-\alpha F) R \quad \frac{d F}{d t}=-(\eta-\beta R) F
$$

then

$$
\begin{aligned}
& \frac{d R}{d F}=\frac{-(\lambda-\alpha F) R}{(\eta-\beta R) F} \\
& \frac{d R}{R}(\eta-\beta R)=-(\lambda-\alpha F) \frac{d F}{F}
\end{aligned}
$$

integrates to give $\quad \eta \ln R-\beta R=-\lambda \ln F+\alpha F+C$
ie: $\quad C$ is a constant of the motion. Each value of C specifies an orbit around the centre. Therefore, we know the equation for each orbit $C=$ constant.
NB - this is global information - we did not linearise to obtain it

