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Maps and chaos 
 
So far have discussed continuous 1st, 2nd order DE 
 
 - found trajectories in phase space are "well behaved" 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  only possibility for divergence of trajectories. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This does not permit stochastic (mixing up/shuffling) diffusion in phase space. This is only possible 
(in plane of paper) if we add another dimension(out of plane of paper) ie in 3 or more dimensions. 
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Now look at simplest systems that show route to chaos: 
 
Difference equations 
 
i) Show how they "work" – what are their properties; example of chaos. 

ii) Show how they are fundamentally different to the analogous differential equations. 
iii) Quantify the route to chaos – Lyapunov exponents. 
iv) Introduce Universality –  the bifurcation route to chaos, Feigenbaum numbers. 
 
1D Noninvertible maps – the easiest place to start. 
 
 
Piecewise linear 1D maps - the tent map 
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What happens when we iterate the map? 
 
If (i) 1 1

0 0  and 
n n n n
x x x x+ +< < >  

  ie:   x!"#  
 
If (ii) 1 2 2 11 0, so  0

n n n n n
x x x x x+ + + +> < < >  

  as in (i) ie:   x!"# . 
 
So, just consider the interval 

   
x = 0,1!
"
#
$
 - iterates of x are bounded in this range. 

 
We can still look for fixed points, linearise to examine stability as before → local behaviour. 
 
Interesting difference will be in global behaviour of maps. 
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Fixed points are where x
n

 doesn't change as   n!"  so 
 
  

1n n
x x+ =  is fixed point   

 
  x=    ( )M x x=  
 
Graphically: 
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Stability/classification. Can still write  
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So  
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0
x!  is the initial condition 

 
Hence, the fixed point is unstable – oscillates. 
 
Similarly, 
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Consider global behaviour. 
 
Iterate many times 
 
Look at one interate:  ( )
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Fixed points – notice that 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No of fixed points doubles each iterate. 
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Another way of looking at 
  
M p x( )  graphically: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 vertical lines are ( )

n
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 horizontal      ( )
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x M x+ =  
note that the iterates are ‘shuffled’ 
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