Maps and chaos

So far have discussed continuous 1st, 2nd order DE

- found trajectories in phase space are "well behaved"

only possibility for divergence of trajectories.

This does not permit stochastic (mixing up/shuffling) diffusion in phase space. This is only possible (in plane of paper) if we add another dimension(out of plane of paper) ie in 3 or more dimensions.

Now look at simplest systems that show route to chaos:

Difference equations

i) Show how they "work" - what are their properties; example of chaos.
ii) Show how they are fundamentally different to the analogous differential equations.
iii) Quantify the route to chaos - Lyapunov exponents.
iv) Introduce Universality - the bifurcation route to chaos, Feigenbaum numbers.

1D Noninvertible maps - the easiest place to start.

Piecewise linear 1D maps - the tent map

$$
\begin{aligned}
x_{n+1} & =1-2\left|x_{n}-\frac{1}{2}\right| \\
& \equiv M(x)
\end{aligned}
$$

- tells us how $x+1^{\text {th }}$ step depends on

$$
x^{t h} \text { step }
$$

Write as:

$$
x_{n+1}=\begin{array}{c|c}
2 x_{n} & x_{n} \leq \frac{1}{2} \\
2\left(1-x_{n}\right) & x_{n} \geq \frac{1}{2}
\end{array}
$$

What happens when we iterate the map?
If (i) $\quad x_{n}<0 \quad x_{n+1}<0$ and $\left|x_{n+1}\right|>\left|x_{n}\right|$
ie: $x \rightarrow-\infty$
If (ii) $x_{n}>1 \quad x_{n+1}<0$, so $x_{n+2}<0 \quad\left|x_{n+2}\right|>\left|x_{n+1}\right|$ as in (i) ie: $x \rightarrow-\infty$.

So, just consider the interval $x=[0,1]$ - iterates of x are bounded in this range.
We can still look for fixed points, linearise to examine stability as before \rightarrow local behaviour.
Interesting difference will be in global behaviour of maps.

Fixed points are where x_{n} doesn't change as $n \rightarrow \infty$ so

$$
\begin{aligned}
\bar{x}_{n+1} & =\bar{x}_{n} \text { is fixed point } \\
& =\bar{x} \quad M(x)=x
\end{aligned}
$$

Graphically:

Fixed point is in range

$$
\begin{aligned}
\frac{1}{2} & \leq x_{n} \leq 1 \quad \text { ie: } \quad x_{n+1}=2\left(1-x_{n}\right) \\
\bar{x} & =2(1-\bar{x}) \\
x & =2-2 \bar{x} \\
\bar{x} & =\frac{2}{3}
\end{aligned}
$$

so fixed point is
also in range $0 \leq x_{n} \leq \frac{1}{2} \quad$ fixed point $\quad \bar{x}=0$ here $\quad x_{n+1}=2 x_{n}$

Stability/classification. Can still write

$$
\begin{aligned}
x_{n} & =\bar{x}+\delta x_{n} \\
x_{n+1} & =\bar{x}+\delta x_{n+1}
\end{aligned}
$$

ie: δx is small but now
discontinuous.
sub in to

$$
\begin{aligned}
& x_{n+1}=2\left(1-x_{n}\right) \\
& \bar{x}+\delta x_{n+1}=2\left(1-\bar{x}-\delta x_{n}\right) \\
& \quad \delta x_{n+1}=2-3 \bar{x}-2 \delta x_{n} \\
& \quad=-2 \delta x_{n}
\end{aligned}
$$

$$
\bar{x}=\frac{2}{3} \quad \delta x_{n+1}=2-3 \bar{x}-2 \delta x_{n}
$$

So

$$
\delta x_{n+1}=-2 \delta x_{n}
$$

also

$$
\delta x_{n}=-2 \delta x_{n-1}
$$

so

$$
\begin{aligned}
\delta x_{n+1} & =-2.2 \delta x_{n-1}=-2.2 .2 \delta x_{n-2} \\
& =[-2]^{j+1} \delta x_{n-j}=[-2]^{n+1} \delta x_{0} \text { where } \delta x_{0} \text { is the initial condition }
\end{aligned}
$$

Hence, the fixed point is unstable - oscillates.
Similarly, $\quad \bar{x}=0, \delta x_{n+1}=2 \delta x_{n}$ - unstable $\quad\left[x_{N+1}=2 x_{N}\right]$

Consider global behaviour.

Iterate many times
Look at one interate: $\quad x_{n+1}=M\left(x_{n}\right)$
(some notation here)
two iterates:

$$
\begin{aligned}
& x_{n+2}=M^{2}\left(x_{n}\right) \\
& \quad=M\left(M\left(x_{n}\right)\right)
\end{aligned}
$$

p iterates

$$
x_{n+p}=M^{p}\left(x_{n}\right)
$$

where | $M(x)=\begin{array}{c}2 x \\ 2(1-x)\end{array}$ | $\left.\begin{array}{l}x \\ \\ x\end{array}\right) \frac{1}{2}$ |
| :---: | :---: |
| x | |

Fixed points - notice that

No of fixed points doubles each iterate.

Another way of looking at $M^{p}(x)$ graphically:

$$
\begin{aligned}
& \text { vertical lines are } M\left(x_{n}\right) \\
& \text { horizontal } \quad x_{n+1}=M\left(x_{n}\right)
\end{aligned}
$$

note that the iterates are 'shuffled'

