$\underline{2^{\text {nd }}}$ Order Nonlinear DE - Intro to General Phase Plane Analysis

We will generalize what was done in lectures for the single nonlinear pendulum (for a complete description of fixed point topology see for example course textbooks Ott, Drazin)

We have 2 kinds of information: global and local.

Global information

1) Express $2^{\text {nd }}$ order $D E$ as two coupled $1^{\text {st }}$ order $D E$ (which we can't in general integrate)

$$
\frac{d x}{d t}=F(x, y) \quad \frac{d y}{d t}=G(x, y)
$$

Some notation: autonomous F, G not explicitly t dependent nonautonomous $\quad F, G$ are explicitly t dependent
c.f. pendulum $\quad x \equiv \theta \quad \frac{d \theta}{d t} \equiv y \quad F \equiv y, \quad G \equiv-\omega^{2} \sin x$
pendulum - dynamics given by trajectory in phase space i.e. y, θ space
2) Can then write $\frac{d y}{d x}=\frac{G}{F}$
hence there is a uniquely defined tangent to the $y(x)$ "trajectory" everywhere except at $F=0$ or $G=0$ - the fixed points \bar{x}, \bar{y}.
So generally - trajectories can't cross except at the fixed points.
For the pendulum, other global information came from the symmetries of $y(\theta)$. So generally look at symmetries in F, G to understand topology.
N.B.: This framework encompasses Hamiltonian systems where one has $\underline{p}(\underline{q})$ trajectories in $\underline{p}, \underline{q}$ phase space and for each component:

$$
\frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q_{i}} \quad \frac{d q_{i}}{d t}=-\frac{\partial H}{\partial p_{i}} \quad H \text { - Hamiltonian here }
$$

$\underline{p}, \underline{q} \quad$ are canonical coordinates and $H=(\underline{p}, \underline{q})=\sum_{j} \frac{p_{j}{ }^{2}}{2 m}+V\left(q_{j}\right)$
(H constant)

- the pendulum is of this class.

Local information:

We can - i) find fixed points $F=0, G=0 \quad:-\bar{x}, \bar{y}$
ii) linearize about fixed points to classify them.

- To consider the general case - let’s consider that a fixed point \bar{x}, \bar{y} exists - classify all possible behaviour.

Classification of fixed point behaviour
Let $F=0, G=0$ have solution \bar{x}, \bar{y}

$$
\begin{array}{ll}
\text { consider vicinity of this fixed point } \quad \begin{array}{l}
x=\bar{x}+\delta x \\
\\
y=\bar{y}+\delta y
\end{array}
\end{array}
$$

we can Taylor expand F, G

$$
\begin{aligned}
& F(x, y)=F(\bar{x}, \bar{y})+\frac{\partial F(\bar{x}, \bar{y})}{\partial x} \delta x+\frac{\partial F(\bar{x}, \bar{y})}{\partial y} \delta y+O\left(\delta x^{2}, \delta y^{2}, \delta x \delta y\right) \\
& G(x, y)=G(\bar{x}, \bar{y})+\frac{\partial G(\bar{x}, \bar{y})}{\partial x} \delta x+\frac{\partial G(\bar{x}, \bar{y})}{\partial y} \delta y+O\left(\delta x^{2}, \delta y^{2}, \delta x \delta y\right)
\end{aligned}
$$

but $F(\bar{x}, \bar{y}), G(\bar{x}, \bar{y})=0$

- assumed that F, G are twice differentiable.

So now need to solve equations of the form:

$$
\begin{aligned}
& F=a \delta x+b \delta y \quad \text { - nonlinear problem now reduced to linear algebra. } \\
& G=c \delta x+d \delta y \quad
\end{aligned}
$$

a, b, c, d are the differentials from Taylor expansion $a=\frac{\partial F(\bar{x}, \bar{y})}{\partial x} \quad$ etc.

So in the vicinity of \bar{x}, \bar{y}

$$
\begin{aligned}
\frac{d \delta x}{d t} & =a \delta x+b \delta y \\
\frac{d \delta y}{d t} & =c \delta x+d \delta y
\end{aligned} \quad \text { or } \quad \underline{d \underline{\delta x}} \frac{d x}{d x} \underline{=} \cdot \underline{\delta x}
$$

where $\quad \underline{\delta x}=\binom{\delta x}{\delta y} \quad \underline{\underline{J}}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

Use the method of normal modes - i.e. assume solutions of the form $\underline{\delta x}=e^{s t} \underline{u}$, where

$$
\underline{u}=\binom{u}{v} \quad \text { is a constant vector (eigenvector) and } s \text { is eigenvalue (one eigenvalue per eigenvector). }
$$

then $\underline{\underline{J}} \cdot \underline{u}=s \underline{u}$. To rearrange, write the RHS as a dot product, i.e.:
$s \underline{u}=\left(\begin{array}{ll}s & 0 \\ 0 & s\end{array}\right)\binom{u}{v}=\underline{\underline{s}} \cdot \underline{u}$ so that $\underline{\underline{J}} \cdot \underline{u}=\underline{\underline{s}} \cdot \underline{u}$
or $(\underline{\underline{J}}-\underline{\underline{s}}) \cdot \underline{\underline{u}}=0 \quad$ so $\quad \underline{\underline{J}}-\underline{\underline{s}}=\left(\begin{array}{cc}a-s & b \\ c & d-s\end{array}\right)$
For nontrivial solutions $(u \neq 0)$ we have $|\underline{\underline{J}-\underline{s}}|=0 \quad$ i.e. $\quad 0=\left|\begin{array}{cc}a-s & b \\ c & d-s\end{array}\right|$
working out the determinant:

$$
\begin{aligned}
0 & =(a-s)(d-s)-b c \\
& =s^{2}-s(a-d)+a d-b c \quad \text { giving } s=\frac{1}{2}\left\{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}\right\}
\end{aligned}
$$

which we will write as $s=\frac{1}{2}\left\{p \pm \sqrt{p^{2}-4 q}\right\}$ for short.
There are 2 eigenvalues s_{+}, s_{-}so there are also 2 eigenvectors $\underline{u}_{+}, \underline{u}_{-}$
then the general solution for $\underline{\delta x}=\binom{\delta x}{\delta y}$ is $\underline{\delta x}=C_{1} e^{s_{+} t} \underline{u}_{+}+C_{2} e^{s-t} \underline{u}_{-}$and C_{1}, C_{2} are arbitrary constants.
In components this is:
$\delta x=C_{1} e^{s_{+} t} u_{+}+C_{2} e^{s_{-} t} u_{-}=A e^{s_{+} t}+B e^{s_{-} t}$
$\delta y=C_{1} e^{s_{+} t} v_{+}+C_{2} e^{s_{-} t} v_{-}=C e^{s_{+} t}+D e^{s_{-} t}$
and $\underline{u}_{ \pm}$both satisfy $\underline{\underline{J}} \cdot \underline{u}=s \underline{u}$ so since $\underline{u}_{+}=\binom{u_{+}}{v_{+}}$etc, we have that
$a u_{ \pm}+b v_{ \pm}=s_{ \pm} u_{ \pm}$
$c u_{ \pm}+d v_{ \pm}=s_{ \pm} v_{ \pm} \quad$ if you need to find the $\underline{u}_{+}, \underline{u}_{-}$
Now use this solution to classify all fixed points.

Classification

All depends on nature of the roots:
$s_{ \pm}=\frac{1}{2}\left\{p \pm \sqrt{p^{2}-4 q}\right\}$

1. $p^{2}>4 q, q>0$
$s_{ \pm}$both real, distinct, same sign
distinct so take $s_{+}>s_{-}$(say)
then for $t \rightarrow \infty, \underline{\delta x} \simeq C_{1} e^{s+t} \underline{u}_{+}$dominates, implying

for $p>0 \quad s_{ \pm}>0$-explosive growth, $\underline{\delta x} \rightarrow \infty$ unstable, for $p<0 \quad s_{ \pm}<0$ - decay $\underline{\delta x} \rightarrow 0$ stable

$$
\text { [special case } \left.p^{2}=4 q\right] \rightarrow \text { star point }
$$

2. $p^{2}>4 q \quad q<0$
$s_{ \pm}$real, distinct -of opposite sign
consider $\underline{\delta x}=C_{1} e^{s_{+} t} \underline{u}_{+}+C_{2} e^{s_{-} t} \underline{u}_{-}$and take $s_{+}>0>s_{-}$
then as $t \rightarrow \infty \quad \underline{\delta x} \approx C_{1} e^{s_{+} t} \underline{u}_{+}$, as $\quad t \rightarrow-\infty \quad \underline{\delta x} \approx C_{2} e^{s_{-} t} \underline{u}_{-}$
so $t \rightarrow \infty, \begin{aligned} & \delta x=c_{1} e^{s_{+} t} u_{+} \\ & \delta y=c_{1} e^{s_{+} t} v_{+}\end{aligned} \quad \delta y=\frac{v_{+}}{u_{+}} \delta x \quad \operatorname{ditto} t \rightarrow-\infty, \delta y=\frac{v_{-}}{u_{-}} \delta x$

moves from one characteristic to the other as $t \rightarrow-\infty$ to $t \rightarrow+\infty$

Saddle point

(only time you need to evaluate u, v)
3. $p^{2}<4 q \quad p \neq 0$
complex conjugate pair $s_{ \pm}=\alpha \pm i \beta \quad \alpha=p / 2 \quad \beta=\left|\frac{p^{2}-4 q}{2}\right|^{1 / 2}$
so that $\underline{\delta X}=C_{1} e^{\alpha t} e^{+i \beta t} \underline{u}_{+}+C_{2} e^{\alpha t} e^{-i \beta t} \underline{u}_{-}=e^{\alpha t}\left[C_{1} e^{+i \beta t} \underline{u}_{+}+C_{2} e^{-i \beta t} \underline{u}_{-}\right]$
if $p, \alpha+$ ve then we have explosive growth
spiral fixed point
if - ve -then decay
in addition - there is an oscillating part with 'frequency' β

4. $p^{2}<4 q \quad p=0 \quad$ (special case of (3)) so $q>0$
now $\quad s_{ \pm}= \pm i q$
Substitute into case 3 above $\alpha=0 \quad \beta=q$ then $\underline{\delta x}=C_{1} e^{+i q t} \underline{u}_{+}+C_{2} e^{-i q t} \underline{u}_{-}$oscillates with 'frequency' q.

No growth or decay - centre fixed point
c.f. simple pendulum

Summary

Sade point.

saddle part
$\left[\begin{array}{l}\text { NB hay out dore } \\ \text { Sremid cases a loves } \\ p^{2}=4 q \text { axis }\end{array}\right]$

Recall $p=a+d \quad q=a d-b c$
i.e. $\quad p=\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y} \quad q=\frac{\partial F}{\partial x} \cdot \frac{\partial G}{\partial y}-\frac{\partial F}{\partial y} \cdot \frac{\partial G}{\partial x} \quad$ all evaluated at the fixed point \bar{x}, \bar{y}

Nomenclature

Attractors, Attractive fixed points: stable nodes

Repellors, Repulsive fixed points: unstable nodes

centre, saddle- not an attractor or repellor

