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System described by ( ... ) where  are the relevant macroscopic variables

 must be a function of dimensionless groups ( )

if there are  physical dimensions (mass,

Buckingham  theorem 
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there are  distinct dimensionless groups.
Then ( )  is the general solution for this universality class.
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System described by ( ... ) where  is a macroscopic variable

 must be a function of dimensionless groups ( )

if there are  physical dimensions (mass, 

Example: simple (nonlinear) pendulum
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Step 1: write down the relevant macroscopic va

length, time etc.) there are  dimensionless groups

variable dimension description
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NB ( ) is universal ie same for all pendula- 
we can find it knowing some other
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System described by ( ... ) where  is a macroscopic variable

 must be a function of dimensionless groups ( )

if there are  p

Example: fluid turbulence, the Kolmogorov '5/3 power spectrum'
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Step 1: write down the relevant variables

hysical dimensions (mass, length, time etc.

 (incompressible so energy/mass):

) there are  dimensionless groups

variable dimension description
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nit wave no.
         

rate of energy input

wavenumber
3,Step 2: form dimensionless groups: 

Step 3: make some simplifying assumption
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System described by ( ... ) where 

Buchingham  theorem (similarity an

 is a  macrosc

alysis)
universal scaling, anom

opic variable

 must be a func

alous scaling
rel

tion of dimensio
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if there are  physical dimensions (mass, length, time etc.) there are  dimensionless groups

variable dimension description

( ) energy/unit wave no.

rate of energy 

Turbulence:
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introduce another characteristic speed....
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variable dimension d
Step 1: write down the relevant variabl

escription
driving scale

dissipation scale

bulk (driving ) flow speed

visc
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os

Homogeneous Isotropic Turbulence and Reynolds Number
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Step 2: form dimensionless groups: 

 and importantly ( ),
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 of the dynamical quantity, here 

 transfer rate ~ , injection rate ~ , dissipation rate ~  - gives ~ ~

this relates  to  

 assume steady state and conservation energy...
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