Notes and examples: Buckingham Π theorem

PX391-SC Chapman

Universality-1 d.o.f.

Pendulum

$$F = mg, F_{t} = mg\sin\theta, a_{t} = l\frac{d^{2}\theta}{dt^{2}}$$

$$F_{t} = ma_{t}; \frac{d^{2}\theta}{dt^{2}} = -\frac{g}{l}\sin\theta = -\omega^{2}\frac{\partial V}{\partial\theta}$$

$$V(\theta) = 1 - \cos(\theta) \sim \frac{\theta^{2}}{2} + \dots$$
same behaviour at
any local minimum in *V*(*θ*)
(insensetive to details)

Buckingham π theorem

System described by $F(Q_1...Q_p)$ where $Q_{1..p}$ are the relevant macroscopic variables

- *F* must be a function of dimensionless groups $\pi_{1..M}(Q_{1..p})$
- if there are R physical dimensions (mass, length, time etc.)
- there are M = P R distinct dimensionless groups.
- Then $F(\pi_{1,M}) = C$ is the general solution for this universality class.
- To proceed further we need to make some intelligent guesses for $F(\pi_{1..M})$

See e.g. Barenblatt, Scaling, self - similarity and intermediate asymptotics, CUP, [1996] also Longair, Theoretical concepts in physics, Chap 8, CUP [2003]

Example: simple (nonlinear) pendulum

System described by $F(Q_1...Q_p)$ where Q_k is a macroscopic variable

F must be a function of dimensionless groups $\pi_{1..M}(Q_{1..p})$

if there are R physical dimensions (mass, length, time etc.) there are M = P - R dimensionless groups

a .		•	• .				1				•		1	
Ster	n	I۰.	writ	е с	own	the	rel	evant	macr	0220	n ₁ C	variat	٦le	26.
Sic	μ.	. .	** 1 1		10 11 11	unc	101	e vunit	muci	0500		vuriu	J 1	-0.

variable	dimension	description
θ_0	- _	angle of release
т	[M]	mass of bob
τ	$\begin{bmatrix} T \end{bmatrix}$	period of pendulum
8	$[L][T]^{-2}$	gravitational acceleration
l	$\begin{bmatrix} L \end{bmatrix}$	length of pendulum

Step 2: form dimensionless groups: P = 5, R = 3 so M = 2

 $\pi_1 = \theta_0, \pi_2 = \frac{\tau^2 l}{g}$ and no dimensionless group can contain *m*

then solution is $F(\theta_0, \tau^2 l/g) = C$

Step 3: make some simplifying assumption: $f(\pi_1) = \pi_2$ then the period: $\tau = f(\theta_0) \sqrt{\frac{l}{g}}$

NB $f(\theta_0)$ is universal ie same for all pendula-

we can find it knowing some other property eg conservation of energy..

Example: fluid turbulence, the Kolmogorov '5/3 power spectrum'

System described by $F(Q_1...Q_p)$ where Q_k is a macroscopic variable

F must be a function of dimensionless groups $\pi_{1..M}(Q_{1..p})$

if there are R physical dimensions (mass, length, time etc.) there are M = P - R dimensionless groups

Step 1: write down the relevant variables (incompressible so energy/mass):

variabledimensiondescriptionE(k) $[L]^3[T]^{-2}$ energy/unit wave no. ε_0 $[L]^2[T]^{-3}$ rate of energy inputk $[L]^{-1}$ wavenumber

Step 2: form dimensionless groups: P = 3, R = 2, so M = 1

$$\pi_1 = \frac{E^3(k)k^5}{\varepsilon_0^2}$$

Step 3: make some simplifying assumption:

 $F(\pi_1) = \pi_1 = C$ where C is a non universal constant, then: $E(k) \sim \varepsilon_0^{2/3} k^{-5/3}$

Buchingham π theorem (similarity analysis)

universal scaling, anomalous scaling

System described by $F(Q_1...Q_p)$ where Q_k is a relevant macroscopic variable

F must be a function of dimensionless groups $\pi_{1..M}(Q_{1..p})$

if there are *R* physical dimensions (mass, length, time etc.) there are M = P - R dimensionless groups Turbulence:

variable	dimension	description
E(k)	$\begin{bmatrix} L \end{bmatrix}^3 \begin{bmatrix} T \end{bmatrix}^{-2}$	energy/unit wave no.
\mathcal{E}_0	$[L]^2 [T]^{-3}$	rate of energy input
k	$\begin{bmatrix} L \end{bmatrix}^{-1}$	wavenumber

$$M = 1, \pi_1 = \frac{E^3(k)k^5}{\varepsilon_0^2}, E(k) \sim \varepsilon_0^{2/3} k^{-5/3}$$

introduce another characteristic speed....

variable	dimension	description
E(k)	$[L]^3[T]^{-2}$	energy/unit wave no.
\mathcal{E}_0	$[L]^2 [T]^{-3}$	rate of energy input
k	$\begin{bmatrix} L \end{bmatrix}^{-1}$	wavenumber
v	$[L][T]^{-1}$	characteristic speed

$$M = 2, \pi_1 = \frac{E^3(k)k^5}{\varepsilon_0^2}, \pi_2 = \frac{v^2}{Ek} \text{ let } \pi_1 \sim \pi_2^{\alpha}, E(k) \sim k^{-(5+\alpha)/(3+\alpha)}$$

Homogeneous Isotropic Turbulence and Reynolds Number

variable	dimension	description
L_0	$\begin{bmatrix} L \end{bmatrix}$	driving scale
η	$\begin{bmatrix} L \end{bmatrix}$	dissipation scale
U	$[L][T]^{-1}$	bulk (driving) flow speed
V	$\begin{bmatrix} L \end{bmatrix}^2 \begin{bmatrix} T \end{bmatrix}^{-1}$	viscosity

Step 1: write down the relevant variables:

Step 2: form dimensionless groups: P = 4, R = 2, so M = 2

$$\pi_1 = \frac{UL_0}{v} = R_E, \pi_2 = \frac{L_0}{\eta}$$
 and importantly $\frac{L_0}{\eta} = f(N)$, where N is no. of d.o.f

Step 3: d.o.f from scaling if
$$f(N) \sim N^{\alpha}$$
 here $\frac{L_0}{\eta} \sim N^3$, or $N^{3\beta}$ or $\frac{L_0}{\eta} \sim \lambda^{N/3}$ or ...

Step 4: assume steady state and conservation of the dynamical quantity, here energy...

transfer rate $\varepsilon_r \sim \frac{u_r^3}{r}$, injection rate $\varepsilon_{inj} \sim \frac{U^3}{L_0}$, dissipation rate $\varepsilon_{diss} \sim \frac{v^3}{\eta^4}$ - gives $\varepsilon_{inj} \sim \varepsilon_r \sim \varepsilon_{diss}$

this relates π_1 to π_2 giving: $R_E = \frac{UL_0}{v} \sim \left(\frac{L_0}{\eta}\right)^{4/3} \sim N^{\alpha}, \alpha > 0$ thus N grows with R_E