Notes and examples: Buckingham Π theorem

PX391- S C Chapman

Universality- 1 d.o.f.

Pendulum
$F=m g, F_{t}=m g \sin \theta, a_{t}=l \frac{d^{2} \theta}{d t^{2}}$
$F_{t}=m a_{t} ; \frac{d^{2} \theta}{d t^{2}}=-\frac{g}{l} \sin \theta=-\omega^{2} \frac{\partial V}{\partial \theta}$
$V(\theta)=1-\cos (\theta) \sim \frac{\theta^{2}}{2}+\ldots$

same behaviour at any local minimum in $V(\theta)$ (insensetive to details)

Buckingham π theorem

System described by $F\left(Q_{1} \ldots Q_{p}\right)$ where $Q_{1 . p}$ are the relevant macroscopic variables
F must be a function of dimensionless groups $\pi_{1 . . M}\left(Q_{1 . . p}\right)$
if there are R physical dimensions (mass, length, time etc.)
there are $M=P-R$ distinct dimensionless groups.
Then $F\left(\pi_{1 . . M}\right)=C$ is the general solution for this universality class.
To proceed further we need to make some intelligent guesses for $F\left(\pi_{1 ., M}\right)$

See e.g. Barenblatt, Scaling, self - similarity and intermediate asymptotics, CUP, [1996] also Longair,Theoretical concepts in physics,Chap 8,CUP [2003]

Example: simple (nonlinear) pendulum

System described by $F\left(Q_{1} \ldots Q_{p}\right)$ where Q_{k} is a macroscopic variable
F must be a function of dimensionless groups $\pi_{1 . . M}\left(Q_{1 . . p}\right)$
if there are R physical dimensions (mass, length, time etc.) there are $M=P-R$ dimensionless groups

Step 1: write down the relevant macroscopic variables:

variable	dimension	description
θ_{0}	-	angle of release
m	$[M]$	mass of bob
τ	$[T]$	period of pendulum
g	$[L][T]^{-2}$	gravitational acceleration
l	$[L]$	length of pendulum

Step 2: form dimensionless groups: $P=5, R=3$ so $M=2$

$\pi_{1}=\theta_{0}, \pi_{2}=\frac{\tau^{2} l}{g}$ and no dimensionless group can contain m
then solution is $F\left(\theta_{0}, \tau^{2} l / g\right)=C$
Step 3: make some simplifying assumption: $f\left(\pi_{1}\right)=\pi_{2}$ then the period: $\tau=f\left(\theta_{0}\right) \sqrt{l / g}$
NB $f\left(\theta_{0}\right)$ is universal ie same for all pendulawe can find it knowing some other property eg conservation of energy..

Example: fluid turbulence, the Kolmogorov '5/3 power spectrum'

System described by $F\left(Q_{1} \ldots Q_{p}\right)$ where Q_{k} is a macroscopic variable
F must be a function of dimensionless groups $\pi_{1 . . M}\left(Q_{1 . . p}\right)$
if there are R physical dimensions (mass, length, time etc.) there are $M=P-R$ dimensionless groups

Step 1: write down the relevant variables (incompressible so energy/mass):

variable	dimension	description
$E(k)$	$[L]^{3}[T]^{-2}$	energy/unit wave no.
ε_{0}	$[L]^{2}[T]^{-3}$	rate of energy input
k	$[L]^{-1}$	wavenumber

Step 2: form dimensionless groups: $P=3, R=2$, so $M=1$
$\pi_{1}=\frac{E^{3}(k) k^{5}}{\varepsilon_{0}^{2}}$
Step 3: make some simplifying assumption:
$F\left(\pi_{1}\right)=\pi_{1}=C$ where C is a non universal constant, then: $E(k) \sim \varepsilon_{0}^{2 / 3} k^{-5 / 3}$

Buchingham π theorem (similarity analysis) universal scaling, anomalous scaling
System described by $F\left(Q_{1} \ldots Q_{p}\right)$ where Q_{k} is a relevant macroscopic variable
F must be a function of dimensionless groups $\pi_{1 . . M}\left(Q_{1 . . p}\right)$
if there are R physical dimensions (mass, length, time etc.) there are $M=P-R$ dimensionless groups Turbulence:

variable	dimension	description
$E(k)$	$[L]^{3}[T]^{-2}$	energy/unit wave no.
ε_{0}	$[L]^{2}[T]^{-3}$	rate of energy input
k	$[L]^{-1}$	wavenumber

$$
M=1, \pi_{1}=\frac{E^{3}(k) k^{5}}{\varepsilon_{0}^{2}}, E(k) \sim \varepsilon_{0}^{2 / 3} k^{-5 / 3}
$$

introduce another characteristic speed....

variable	dimension	description
$E(k)$	$[L]^{3}[T]^{-2}$	energy/unit wave no.
ε_{0}	$[L]^{2}[T]^{-3}$	rate of energy input
k	$[L]^{-1}$	wavenumber
v	$[L][T]^{-1}$	characteristic speed

$$
M=2, \pi_{1}=\frac{E^{3}(k) k^{5}}{\varepsilon_{0}^{2}}, \pi_{2}=\frac{v^{2}}{E k} \text { let } \pi_{1} \sim \pi_{2}^{\alpha}, E(k) \sim k^{-(5+\alpha) /(3+\alpha)}
$$

Homogeneous Isotropic Turbulence and Reynolds Number

Step 1: write down the relevant variables:

variable	dimension	description
L_{0}	$[L]$	driving scale
η	$[L]$	dissipation scale
U	$[L][T]^{-1}$	bulk (driving) flow speed
v	$[L]^{2}[T]^{-1}$	viscosity

Step 2: form dimensionless groups: $P=4, R=2$, so $M=2$
$\pi_{1}=\frac{U L_{0}}{v}=R_{E}, \pi_{2}=\frac{L_{0}}{\eta}$ and importantly $\frac{L_{0}}{\eta}=f(N)$, where N is no. of d.o.f
Step 3: d.o.f from scaling ie $f(N) \sim N^{\alpha}$ here $\frac{L_{0}}{\eta} \sim N^{3}$, or $N^{3 \beta}$ or $\frac{L_{0}}{\eta} \sim \lambda^{N / 3}$ or \ldots
Step 4: assume steady state and conservation of the dynamical quantity, here energy... transfer rate $\varepsilon_{r} \sim \frac{u_{r}^{3}}{r}$, injection rate $\varepsilon_{i n j} \sim \frac{U^{3}}{L_{0}}$, dissipation rate $\varepsilon_{\text {diss }} \sim \frac{v^{3}}{\eta^{4}}$ - gives $\varepsilon_{\text {inj }} \sim \varepsilon_{r} \sim \varepsilon_{\text {diss }}$
this relates π_{1} to π_{2} giving: $R_{E}=\frac{U L_{0}}{v} \sim\left(\frac{L_{0}}{\eta}\right)^{4 / 3} \sim N^{\alpha}, \alpha>0$ thus N grows with R_{E}

