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Universality- 1 d.o.f.
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Buckingham 7 theorem
System described by F(Q,...Q,) where Q,  are the relevant macroscopic variables
F must be a function of dimensionless groups =, \, (Q,_,)

If there are R physical dimensions (mass, length, time etc.)

there are M = P — R distinct dimensionless groups.

Then F(z, ,,) =C is the general solution for this universality class.

To proceed further we need to make some intelligent guesses for F (7, ,,)

See e.g. Barenblatt, Scaling, self - similarity and intermediate asymptotics, CUP, [1996]
also Longair, Theoretical concepts in physics,Chap 8, CUP [2003]



Example: simple (nonlinear) pendulum

System described by F(Q,...Q,) where Q, is a macroscopic variable
F must be a function of dimensionless groups =, ,, (Q, )
if there are R physical dimensions (mass, length, time etc.) there are M = P — R dimensionless groups

Step 1: write down the relevant macroscopic variables:

variable | dimension | description

g, | - angle of release

m i [M] i mass of bob

T i [T] i period of pendulum
' [L][T]? ! gravitational acceleration
| |
| |
| |

g
I length of pendulum

[L]

Step 2: form dimensionless groups: P=5R=3s0M =2
2

=6y, = Ll and no dimensionless group can contain m
9

then solution is F(HO,T%) =C

Step 3: make some simplifying assumption: f () = z, then the period: 7 = f (6,) /%

NB f (6,) is universal ie same for all pendula-
we can find it knowing some other property eg conservation of energy..



Example: fluid turbulence, the Kolmogorov '5/3 power spectrum'’

System described by F(Q,...Q,) where Q, is a macroscopic variable
F must be a function of dimensionless groups =, , (Q, )
if there are R physical dimensions (mass, length, time etc.) there are M = P — R dimensionless groups

Step 1: write down the relevant variables (incompressible so energy/mass):
variable | dimension ! description

E(k) i [L]3 [T]_2 i energy/unit wave no.
& 1 [LT'[T]” I rate of energy input
k i [L]_1 i wavenumber
Step 2: form dimensionless groups: P=3,R=2,so0M =1
3 5
. _E (:)Z)k

Step 3: make some simplifying assumption:

F(7,) = 7, = C where C is a non universal constant, then: E (k) ~ go%k‘%



Buchingham 7z theorem (similarity analysis)

universal scaling, anomalous scaling
System described by F(Q,...Q,) where Q, is a relevant macroscopic variable

F must be a function of dimensionless groups 7, ,, (Q, )

if there are R physical dimensions (mass, length, time etc.) there are M = P — R dimensionless groups
Turbulence:
variable | dimension |

description
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energy/unit wave no.

rate of energy input

wavenumber

introduce another characteristic speed....
variable | dimension |

description
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energy/unit wave no.

rate of energy input
wavenumber

characteristic speed
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Homogeneous Isotropic Turbulence and Reynolds Number
Step 1: write down the relevant variables:

variable | dimension ! description
L o L] driving scale
7 i [L] i dissipation scale
U | [L][T]" | bulk (driving ) flow speed
% i [L]2 [T]fl i viscosity

Step 2: form dimensionless groups: P=4,R=2, soM =2

e Ly

T » £y 7T, :% and importantly ;: f (N),where N is no. of d.o.f

Step 3: d.o.f from scaling ie f (N) ~ N“ here L. N®or N* or L. A% or ..
n n
Step 4: assume steady state and conservation of the dynamical quantity, here energy...

f uf L v dissipati Ve i
transfer rate &, ~ P injection rate &, ~—, dissipation rate &4, ~ o QIVES & ~ & ~ Egies

uL, (L) .
this relates 7, to 7, giving: R. =—2~| =| ~N“,a>0 thus N grows with R
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