Problem Sheet 1 - Non Linearity, Chaos and Complexity Solutions

Sheet 1 Question 1

(i) Particle motion in \mathbf{B} field
$m \frac{d \mathbf{v}}{d t}=q \mathbf{v} \wedge \mathbf{B} \quad \frac{d \mathbf{r}}{d t}=\mathbf{v}$

Normalise $v^{*}=\frac{v}{v_{0}}, \quad t=t^{*} T \quad r=r^{*} L \quad B=B^{*} B_{0}$
sub in
$m \frac{d \mathbf{v}^{*} y_{0}}{d t^{*} T}=q y_{0} \mathbf{v}^{*} \wedge \mathbf{B}^{*} B_{0}$
$\frac{d \mathbf{v}^{*}}{d t^{*}}=T \cdot \frac{q B_{0}}{m} \mathbf{v}^{*} \wedge \mathbf{B}^{*} \quad$ which is normalised if $T=\left(\frac{q B_{0}}{m}\right)^{-1}=\frac{1}{\Omega}$
also
$\frac{d \mathbf{r}^{*}}{d t^{*}} \frac{L}{T}=\mathbf{v}^{*} v_{0} \quad$ ie: $\quad v_{0}=\frac{L}{T}$

$$
\text { so } \quad L=v_{0} T=\frac{v_{0}}{\Omega}
$$

solving the equations yields circular motion about \mathbf{B} with frequency Ω, radius L.
Frequency is independent of velocity (particle energy), whereas gryroradius (L) depends on velocity.
(ii) Wave equation (ID here)
$\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=\frac{\partial^{2} \psi}{\partial x^{2}}$
Normalise: $\quad \frac{1}{c^{2}} \frac{\partial^{2} \psi^{*}}{\partial t^{*}} \frac{\psi_{0}}{T^{2}}=\frac{\partial^{2} \psi^{*} \psi_{0}}{\partial x^{* 2} L^{2}}$
which is normalised (dimensionless) if
$\frac{\partial^{2} \psi^{*}}{\partial t^{* 2}}=\frac{\partial^{2} \psi^{*}}{\partial x^{2}} \quad \frac{L}{T}=c$.
Therefore, c is characteristic velocity of all structures regardless of length scale and is independent of amplitude ψ. Solutions are of the form $\psi=f(x+c t)+g(x-c t)$.
(iii) Conservation of quantity Q with number density n
$\frac{\partial(n Q)}{\partial t}=\nabla \cdot(n Q \mathbf{v})$,
where Q is carried by "particles" of density n.
Normalise
$\frac{\partial\left(n^{*} Q^{*}\right)}{\partial t^{*}} \frac{1}{T} \frac{1}{L^{3}} Q_{0}=\nabla \cdot\left(n^{*} Q^{*} \mathbf{v}^{*}\right) \frac{1}{L} \frac{1}{L^{3}} \frac{L}{T} Q_{0} \quad$ ie $\quad \mathbf{v}^{*}=\frac{\mathbf{v}}{v_{0}}=\frac{\mathbf{v}}{\left(\frac{L}{T}\right)}$
then: $\quad \frac{\partial}{\partial t^{*}}\left(n^{*} Q^{*}\right)=\nabla^{*} \cdot\left(n^{*} Q^{*} \mathbf{v}^{*}\right)$.
There is no characteristic scale if $v_{0}=\frac{L}{T}$ equation just specifies that structures on all length and timescales are conserved.

Sheet 1 Question 2

$$
F=F_{0}+F_{1} M+F_{2} M^{2}+F_{3} M^{3}+F_{4} M^{4}
$$

can always be written as

$$
F=F_{0}{ }^{\prime}+F_{2}{ }^{\prime}\left(M-M_{0}\right)^{2}+F_{3}{ }^{\prime}\left(M-M_{0}\right)^{3}+F_{4}{ }^{\prime}\left(M-M_{0}\right)^{4}
$$

since both are general polynormals up to degree 4 then $M \rightarrow M-M_{0}$ is the required transformation.
(i) For symmetry $F_{3}=0$.

We then have (dropping 's)
$F(M)=F_{0}+\alpha\left(T-T_{c}\right) M^{2}+\beta M^{4}$
extrema
$\frac{\partial F}{\partial M}=2 \alpha\left(T-T_{c}\right) M+4 \beta M^{3}=2 M\left(\alpha\left(T-T_{c}\right)+2 \beta M\right)^{2}$
ie: \quad at $M=0$ or $M^{2}=\alpha \frac{\left(T_{c}-T\right)}{2 \beta}$.
But M is real so:
$M= \pm \sqrt{\frac{\alpha\left(T_{c}-T\right)}{2 \beta}}$ is an extreme for $T<T_{c}$
look for minima

$$
\frac{\partial^{2} F}{\partial M^{2}}=2 \alpha\left(T-T_{c}\right)+12 \beta M^{2}
$$

$M=0: \quad \min$ for $T>T_{c} \quad \max$ for $T<T_{c}$.
$M= \pm \sqrt{\frac{\alpha\left(T_{c}-T\right)}{2 \beta}}$
$\frac{\partial^{2} F}{\partial M^{2}}=2 \alpha\left(T-T_{c}\right)+12 \beta^{6} \frac{\alpha\left(T_{c}-T\right)}{2 \not \beta^{\prime}}=-4 \alpha\left(T-T_{c}\right)$
\min for $T<T_{c} \quad \max$ for $T>T_{c}$
pitchfork bifurcation at $T=T_{c}$

As we go from $T>T_{c}$ to $T<T_{c}$ system "falls" into one of the potential walls - which one is determined by fluctuations at $T=T_{c}$.
(ii) Asymmetric, now $F_{3}=\gamma \neq 0$

$$
\begin{aligned}
& \frac{\partial F}{\partial M}=2 \alpha\left(T-T_{c}\right) M+3 \gamma M^{2}+4 \beta M^{3} \\
& \text { extrema now } \quad \frac{\partial F}{\partial M}=0=M\left\{2 \alpha\left(T-T_{c}\right)+3 \gamma M+4 \beta M^{2}\right\} \\
& M=0, \quad M=\frac{-3 \gamma \pm \sqrt{\left(9 \gamma^{2}-4.2 \alpha\left(T-T_{c}\right) \cdot 4 \beta\right)}}{2.4 \beta}
\end{aligned}
$$

Two real values of M when

$$
9 \gamma^{2}>32 \alpha \beta\left(T-T_{c}\right)
$$

write M as

$$
M=\frac{-3 \gamma \pm 3 \sqrt{\gamma^{2}-\gamma_{c}^{2}}}{8 \beta}
$$

Consider

$$
\frac{\partial^{2} F}{\partial M^{2}}=2 \alpha\left(T-T_{c}\right)+6 \gamma M+12 \beta M^{2}
$$

$M=0 \quad$ is min for $\quad T>T_{c}$.
For $M \neq 0$ extrema given by $2 \alpha\left(T-T_{c}\right)+3 \gamma M+4 \beta M^{2}=0$ which gives $\frac{\partial^{2} F}{\partial M^{2}}=3 \gamma M+8 \beta M^{2}$,
or
$\frac{\partial^{2} F}{\partial M^{2}}=M\left(\pm 3 \sqrt{\gamma^{2}-\gamma_{c}^{2}}\right)$
Then in addition to $M=0$ solution
$\gamma^{2}>\gamma_{c}^{2} \quad 2$ real $M \neq 0$ roots, one max, one min
$\gamma^{2}=\gamma_{c}^{2} \quad M=\frac{-3 \gamma}{8 \beta} \quad \gamma_{c}^{2}=\frac{32 \alpha \beta}{9}\left(T-T_{c}\right)$
$\Rightarrow T>T_{c}$.
$\gamma^{2}<\gamma_{c}^{2}-M$ imaginary \quad no max/min.
Also at $\gamma_{c}^{2}=0 \quad T=T_{c} \quad M=\frac{-3 \gamma \pm 3 \gamma}{8 \beta} \quad$ ie: $\quad \begin{aligned} & M=0 \\ & M\end{aligned}$
(b) is $(-)$ ve root hence $\frac{\partial^{2} F}{\partial M^{2}}>0$ is a min
(a) is inflexion. Finally, for $\gamma_{c}^{2}<02$ real roots, both min and $M=0$ is max graphically

$$
\begin{aligned}
& T>T_{c} \\
& \gamma_{c}^{2}<\gamma^{2}
\end{aligned}
$$

- - going from $T>T_{c}$
O - going from $T<T_{c}$
\} hysteresis

Now fluctuations are unimportant.
iii) Van der Vaal

Expand for $b m \ll 1$
using
$\ln (1-b m) \simeq-\left[b M+\left(\frac{b M}{2}\right)^{2}+\left(\frac{b M}{3}\right)^{3} \ldots ..\right]$
Substitute into F
$F=\frac{T}{b}\left[-b M T-\left(\frac{b M}{2}\right)^{2}-\left(\frac{b M}{3}\right)^{3}+(b M)^{2}+\left(\frac{b M}{2}\right)^{3}+\left(\frac{b M}{3}\right)^{4}\right]+M T-\frac{a M^{2}}{2}$
$=M^{2}\left(\frac{b T}{2}-\frac{a}{2}\right)+M^{3} \frac{b^{2}}{6} T+b^{3} \frac{T M^{4}}{12}$
then $\quad \alpha\left(T-T_{c}\right) \equiv \frac{b T-a}{2}=\frac{b}{2}\left(T-\frac{a}{b}\right)$
$T_{c}=\frac{a}{b}$.

Sheet 1 Question 3

$$
\begin{equation*}
\frac{d q}{d t}=\sin q \tag{i}
\end{equation*}
$$

fixed points $\quad \sin \bar{q}=0 \quad \bar{q}=n \pi \quad n$ integer
linearize about fixed points

$$
\begin{aligned}
& \qquad q(t)=\bar{q}+\delta q \\
& \frac{d \delta q}{d t}=\sin (\bar{q}+\delta q)=\sin \bar{q} \cos \delta q+\cos \bar{q} \sin \delta q=0 \\
& \sin \delta q \simeq \delta q, \cos \delta q \simeq 0 \text { as } \delta q \text { is small } \\
& \text { then } \frac{d \delta q}{d t}=(-1)^{N} \delta q \\
& \text { solution is of form } \delta q=\delta q_{0} e^{s t} \\
& s+v e \quad \text { for } n \text { even } \quad-\quad \text { unstable } \\
& s-v e \quad \text { for } n \text { odd } \quad-\quad \text { stable }
\end{aligned}
$$

Phase plane analysisstable

- unstable

\longrightarrow flow arrows $\quad+v e q$ for $\frac{d q}{d t}-v e \quad q$ increases with time $-v e \quad$ for $\frac{d q}{d t}-v e \quad q$ decreases with time
ii) $\frac{d q}{d t}=\alpha q-\beta q^{2}$
fixed points $\quad \alpha \bar{q}-\beta \bar{q}^{2}=0$

$$
\bar{q}(\alpha-\beta \bar{q})=0
$$

ie: $\quad \bar{q}=0 \quad$ or $\quad \bar{q}=\frac{\alpha}{\beta}$.

Stability $\quad q(t)=\bar{q}+\delta q(t)$
Sub in

$$
\begin{aligned}
\frac{d}{d t}(\delta q) & =\alpha(\bar{q}+\delta q)-\beta(\bar{q}+\delta q)^{2} \\
& =\alpha \bar{q}-\beta \bar{q}^{2}+\delta q(\alpha-2 \beta \bar{q})+0\left(\delta q^{2}\right)
\end{aligned}
$$

but

$$
\alpha \bar{q}-\beta \bar{q}^{2}=0
$$

So, $\frac{d(\delta q)}{d t}=\delta q(\alpha-2 \beta \bar{q})$,
then, assuming that

$$
\delta q=\delta q_{0} e^{s t}
$$

we will have

$$
\begin{array}{lll}
s+v e & \text { for } & \alpha-2 \beta \bar{q}>0 \\
s-v e & \text { for } & \alpha-2 \beta \bar{q}<0 .
\end{array}
$$

Take $\alpha, \beta>0$
then $\quad \bar{q}=0$ is $s+v e$, ie: unstable (repellor)
$\bar{q}=\frac{\alpha}{\beta}$ is $s-v e$, ie: stable (attractor)
Phase plane - sketch $\quad \frac{d q}{d t} v z q$

Problem Sheet 2 - Non Linearity, Chaos and Complexity Solutions

Sheet 2 Question 1.

i) Undamped oscillator

$$
\frac{d^{2} x}{d t^{2}}=-\omega^{2} \sin x
$$

Can integrate this once

$$
\times \frac{d x}{d t}
$$

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}} \cdot \frac{d x}{d t}=-\omega^{2} \sin x \frac{d x}{d t} \\
& \rightarrow \frac{1}{2}\left(\frac{d x}{d t}\right)^{2}-\omega^{2} \cos x=E=\text { constant. }
\end{aligned}
$$

To obtain the dynamics - obtain fixed points, phase plane, etc.
first write as two coupled first order DE

$$
\frac{d x}{d t}=y \quad \frac{d y}{d t}=-\omega^{2} \sin x
$$

fixed points $\bar{y}=0, \quad \sin \bar{x}=0 \quad$ or $\quad \bar{x}=n \pi$.

Stability

Linearize

$$
\begin{aligned}
y & =\bar{y}+\delta y \quad x=\bar{x}+\delta x \\
& =\delta y
\end{aligned}
$$

then

$$
\begin{aligned}
\frac{d \delta x}{d t}=\delta y \quad \frac{d \delta y}{d t} & =-\omega^{2} \sin (\bar{x}+\delta x) \\
& =-\omega^{2} \sin (n \pi+\delta x)
\end{aligned}
$$

use

$$
\begin{aligned}
\sin (A+B)= & \sin A \cos B+\cos A \sin B \\
\sin (n \pi+\delta x) & =\sin n \pi \cos \delta x+\cos n \pi \sin \delta x \\
& =0
\end{aligned}
$$

$\cos (n \pi)=(-1)^{n} \quad$ and $\sin \delta x \simeq \delta x \quad$ since δx small
so $\quad \frac{d \delta x}{d t}=\delta y \quad \frac{d \delta y}{d t}=-\omega^{2}(-1)^{n} \delta x$.

Sufficiently simple to go direct to second order DE
ie: $\quad \frac{d^{2} \delta x}{d t^{2}}=-\omega^{2}(-1)^{N} \delta x$ for which we know solutions of form $\delta x=A e^{\lambda t}+B e^{-\lambda t}$.
Then n even
$\frac{d^{2} \delta x}{d t^{2}}=-\omega^{2} \delta x \quad \delta x=A e^{i \omega t}+B e^{-i \omega t}$,
n odd
$\frac{d^{2} \delta x}{d t^{2}}=+\omega^{2} \delta x \quad \delta x=A e^{\omega t}+B e^{-\omega t}$.
So, $\underline{n \text { even }}$ are centre fixed points
$\delta x \quad$ is oscillatory and $\delta y=\frac{d \delta x}{d t}=i \omega A e^{i o t}-i \omega B e^{-\omega t}$
recall $i=e^{\frac{i \pi}{2}}$ and $-i=e^{\frac{-i \pi}{2}}\left(\right.$ complex numbers $\left.x+i y=r e^{i \theta}\right)$

So, $\quad \delta y=\omega A e^{i\left(w+\frac{\pi}{2}\right)}+\omega B e^{-i\left(w+\frac{\pi}{2}\right)}$

- out of phase $\frac{\pi}{2}$ with δx
n odd

$$
\begin{aligned}
& \delta x=A e^{\omega t}+B e^{-\omega t} \\
& \delta y=\omega A e^{\omega t}-\omega B e^{-\omega t}
\end{aligned}
$$

Saddle point

Separatrix has lines given by
$t \rightarrow \infty \quad \frac{\delta y}{\delta x}=\frac{\omega A e^{\omega t}}{A e^{\omega t}}=\omega$
$t \rightarrow-\infty \quad \frac{\delta y}{\delta x}=\frac{-\omega B e^{-\omega t}}{B e^{-\omega t}}=-\omega$.
Topology: constant of the motion defines the phase plane orbits: and
$E=\frac{y^{2}}{2}-\omega^{2} \cos x$ has symmetry in y and x
Phase plane: see lecture notes and handouts for sketch.
Separatrix has $x= \pm \pi \rightarrow \cos x=-1$ when $y=0, E_{c}=\omega^{2}$ on the separatrix.
ii) Damped oscillator
$\frac{d^{2} x}{d t^{2}}+\lambda \frac{d x}{d t}+\omega^{2} \sin x=0$
Now we will have first order DE:
$\frac{d x}{d t}=y$
$\frac{d y}{d t}=-\omega^{2} \sin x-\lambda y$.

Fixed point $\quad \bar{y}=0, \omega^{2} \sin \bar{x}=0$,
ie: as undamped case $\quad \bar{y}=0, \quad \bar{x}=n \pi$.
Stability analysis
$y=\delta y \quad x=\bar{x}+\delta x$
So $\frac{d \delta x}{d t}=\delta y \quad \frac{d \delta y}{d t}=->\delta y-\omega^{2}(-1)^{n} \delta x$ (as before - same identities).
Now more complicated - solve using general formula as in lectures (given in detail here).
We write $\quad \delta \mathbf{x}=\binom{\delta x}{\delta y}$
then pair of equations are just

$$
\frac{d \delta \mathbf{x}}{d t}=\mathbf{J} \cdot \delta \mathbf{x} \quad \mathbf{J}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where we use notation

$$
\begin{array}{ll}
\frac{d \delta x}{d t}=a \delta x+b \delta y & \mathbf{J}=\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2}(-1)^{n}-\lambda
\end{array}\right) \\
\frac{d \delta y}{d t}=c \delta x+d \delta y &
\end{array}
$$

We then have solutions of the form

$$
\delta \mathbf{x}=C_{1} e^{S_{+}} \mathbf{u}_{+}+C_{2} e^{S_{-}} \mathbf{u}_{-}
$$

where the eigenvalues $s_{ \pm}$are solutions of $\left|\begin{array}{cc}a-s & b \\ c & d-s\end{array}\right|=0$
ie: $\quad 0-(a-s)(d-s)-b c=s^{2}-s(a+d)+a d-b c$
thus $\quad s=\frac{1}{2}\left\{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}\right\}$
here, this is $s_{ \pm}=\frac{1}{2}\left\{-\lambda \pm \sqrt{\lambda^{2}-4\left(\omega^{2}(-1)^{n}\right)}\right\}$.
Two cases:
n odd $\quad s_{ \pm}=\frac{1}{2}\left\{-\lambda \pm \sqrt{\lambda^{2}+4 \omega^{2}}\right\}$
n even

$$
s_{ \pm}=\frac{1}{2}\left\{-\lambda \pm \sqrt{\lambda^{2}-4 \omega^{2}}\right\}
$$

n odd:

$s_{ \pm}$are real, distinct.

$$
s_{ \pm}=\frac{1}{2}\left\{-\lambda \pm \lambda \sqrt{1+\frac{4 \omega^{2}}{\lambda^{2}}}\right\}
$$

for $\lambda+v e$ or $-v e$
$s_{ \pm}$are real and of opposite sign - saddle points (as before).

\underline{n} even:

$s_{ \pm}$may be complex $\quad s_{ \pm}=\frac{1}{2}\left\{-\lambda \pm \lambda \sqrt{1-\frac{4 \omega^{2}}{\lambda^{2}}}\right\}$
complex if $4 \omega^{2}>\lambda^{2}$ otherwise real.
For $\quad \lambda>0$ - decay to stable fixed point
$\lambda<0$ - growth - unstable fixed point
If $4 \omega^{2}>\lambda^{2}$ these are spiral.
Note that if $\lambda=0$ we have

$$
\begin{array}{cc}
s_{ \pm}= \pm \omega & n \text { odd }- \text { saddle and } \\
s_{ \pm}= \pm i \omega & n \text { even- circle fixed points }
\end{array}
$$

So, essentially here, circle points \rightarrow spiral fixed points for $4 \omega^{2}>\lambda^{2}$.

Topology

Look for symmetries in original DE.

$$
\begin{gathered}
\frac{d^{2} x}{d t^{2}}+\lambda \frac{d x}{d t}+\omega^{2} \sin x=0 \\
x \rightarrow-x-\frac{d^{2} x}{d t^{2}}+(-1) \lambda \frac{d x}{d t}+\omega^{2} \sin x(-1)=0
\end{gathered}
$$

Same equation $\rightarrow \quad x>-x$ is this symmetry by reflection? Check what happens to y (below).
$t \rightarrow-t \quad(-1)^{2} \frac{d^{2} x}{d t^{2}}+(-1) \lambda \frac{d x}{d t}+\omega^{2} \sin x=0$
$t \rightarrow-t$ is $\lambda \rightarrow-\lambda$,
ie: damping and increasing $t \equiv$ growth and decreasing t
Sufficient to sketch one of these and note that

$$
y=\frac{d x}{d t} \text { so } x \rightarrow-x \text { gives } y \rightarrow-y \text { rotational symmetry. }
$$

See course handout for sketch

Sheet 2 Question 2

Lotka-Volterra
In our original notation

$$
\begin{aligned}
& \frac{d x}{d t}=(\lambda-\alpha y) x \\
& \frac{d y}{d t}=-(\eta-\beta x) y
\end{aligned}
$$

Fixed points

$$
(\lambda-\alpha \bar{y}) \bar{x}=0 \quad \bar{x}=0 \text { or } \bar{y}=\frac{\lambda}{\alpha}
$$

$$
-(\eta-\beta \bar{x}) \bar{y}=0 \quad \bar{y}=0, \text { or } \bar{x}=\frac{\eta}{\beta}
$$

ie: $\bar{x}=0, \bar{y}=0 \quad \bar{x}=\frac{\eta}{\beta}, \bar{y}=\frac{\lambda}{\alpha}$.
$\underline{\text { Stability - linearise }}$

$$
\begin{aligned}
& \quad x=\bar{x}+\delta x \quad y=\bar{y}+\delta y \\
& \frac{d \delta x}{d t}= \lambda(\bar{x}+\delta x)-\alpha(\bar{y}+\delta y)(\bar{x}+\delta x) \\
&= \underbrace{\lambda \bar{x}-\alpha \bar{y} \bar{x}}_{=0}+(\lambda-\alpha \bar{y}) \delta x-\alpha \bar{x} \delta y-\alpha \delta x \delta y \\
& \frac{d \delta x}{d t}==(\lambda-\alpha \bar{y}) \delta x-\alpha \bar{x} \delta y \\
& \frac{d \delta y}{d t}==-\eta(\bar{y}+\delta y)+\beta(\bar{x}+\delta x)(\bar{y}+\delta y) \\
&= \underbrace{-\eta \bar{y}+\beta x \bar{y}}_{=0}+\delta y(-\eta+\beta \bar{x})+\delta x(\beta \bar{y})+\beta \delta x \delta y \\
& \frac{d \delta y}{d t}=(-\eta+\beta \bar{x}) \delta y+\beta \bar{y} \delta x
\end{aligned}
$$

again - can use formula but shown in full here: write in the form $\frac{d}{d t} \delta \mathbf{x}=\mathbf{J} \cdot \delta \mathbf{x}$
then in notation of notes $\quad \mathbf{J}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}(\lambda-\alpha \bar{y}) & -\alpha \bar{x} \\ \beta \bar{y} & (\beta \bar{x}-\eta)\end{array}\right]$
with eigenvalues
$s_{ \pm}=\frac{1}{2}\left\{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}\right\}$
Consider two fixed points

$$
\begin{gathered}
\bar{x}=0, \bar{y}=0 \quad \mathbf{J}=\left[\begin{array}{cc}
\lambda & 0 \\
0 & -\eta
\end{array}\right] \\
s_{ \pm}=\frac{1}{2}\{(\lambda-\eta) \pm \underbrace{(\lambda-\eta)^{2}+4(\lambda \eta)}\} \\
\lambda^{2}-2 \lambda \eta+\eta^{2}+4 \lambda \eta=(\lambda+\eta)^{2} \\
\text { ie: } \quad s_{+}=\lambda \quad s_{-}=-\eta \quad \text { saddle point. }
\end{gathered}
$$

Consider fixed point

$\bar{x}=\frac{\eta}{\beta} \bar{y}=\frac{\lambda}{\alpha}$
$\mathbf{J}=\left[\begin{array}{cc}0 & \frac{-\alpha \eta}{\beta} \\ \frac{\beta \lambda}{\alpha} & 0\end{array}\right]$
$S_{ \pm}=\frac{1}{2}\left\{ \pm \sqrt{0-4\left(\frac{\beta \lambda}{\alpha}\right)}\left(+\frac{\alpha \eta}{\beta}\right)\right\}$

$$
= \pm \sqrt{-\lambda \eta}
$$

ie: wholly imaginary - centre fixed point.
Topology: no t symmetry since
$t \rightarrow-t-\frac{d x}{d t}=(\lambda-\alpha y) x$

$$
-\frac{d y}{d t}=-(\eta-\beta x) y
$$

Similarly, no symmetries in $x-y$ except change of sign in $\lambda, \eta, \beta, \alpha-$ unrealistic.
Phase plane:

$$
\begin{aligned}
C & =(\eta \ln R-\beta R)-(\alpha F-\lambda \ln F) \\
\frac{d C}{d t} & =\frac{\eta}{R} \frac{d R}{d t}-\beta \frac{d R}{d t}-\alpha F \frac{d F}{d t}+\lambda \frac{1}{F} \frac{d F}{d t} \\
& =(\lambda-\alpha F)(\eta-\beta R)-(\lambda-\alpha F)(\eta-\beta R) \\
& =0 .
\end{aligned}
$$

Hence C is a constant and different values of C specify trajectories (closed) about the centre fixed point.

Sheet 2 Question 3

Proof of existence of a limit cycle:
given $\quad \frac{d x}{d t}=x-y-x\left(x^{2}+2 y^{2}\right), \frac{d y}{d t}=x+y-y\left(x^{2}+y^{2}\right)$
convert to plane polar coordinates r, θ use

$$
x=r \cos \theta \quad y=r \sin \theta
$$

and

$$
x \frac{d x}{d t}+y \frac{d y}{d t}=r \frac{d r}{d t} \quad x \frac{d y}{d t}-y \frac{d x}{d t}=r^{2} \frac{d \theta}{d t}
$$

then

$$
\begin{aligned}
r^{2} \frac{d \theta}{d t} & =x\left[x+\not x-\not y\left(x^{2}+y^{2}\right)\right]-y\left[\not x-y-\not x\left(\not x^{2}+2 y^{2}\right)\right] \\
& =x^{2}+y^{2}+x y^{3}=r^{2}+r^{4} \cos \theta \sin ^{3} \theta \\
r \frac{d r}{d t} & =x\left[x-\not x-x\left(x^{2}+2 y^{2}\right)\right]+y\left[\not x+y-y\left(x^{2}+y^{2}\right)\right] \\
& =x^{2}+y^{2}-x^{4}+3 y^{2} x^{2}-y^{4} \\
& =x^{2}+y^{2}-\left(x^{2}+y^{2}\right)^{2}-x^{2} y^{2} \\
& =r^{2}-r^{4}-r^{4} \cos ^{2} \theta \sin ^{2} \theta .
\end{aligned}
$$

Identity:

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin 2 A=2 \sin A \cos A
\end{aligned}
$$

Giving

$$
r^{2} \frac{d \theta}{d t}=r^{2}+r^{4} \frac{1}{2} \sin ^{2} \theta \sin 2 \theta
$$

$$
r \frac{d r}{d t}=r^{2}-r^{4}\left(1+\frac{1}{4} \sin ^{2} 2 \theta\right)
$$

now

$$
r \frac{d r}{d t}=r^{2}-r^{4}(\underbrace{1+\frac{1}{4} \sin ^{2} 2 \theta}_{B})=r^{2}\left(1-r^{2} B\right)
$$

Bracket B is bounded $\left[1, \frac{5}{4}\right]$

hence

$$
\begin{aligned}
& r \rightarrow \infty \frac{d r}{d t}<0 \\
& r \rightarrow 0 \frac{d r}{d t}>0
\end{aligned}
$$

for any θ

Minimum value of $B=1$ has $\frac{d r}{d t}=0$ for $r=1$
Maximum $\quad B=\frac{5}{4}$ has $\frac{d r}{d t}=0$ for $r=\sqrt{\frac{4}{5}}$

If

$$
r>1, \frac{d r}{d t}<0
$$

If

$$
r<\sqrt{\frac{4}{5}}, \frac{d r}{d t}>0
$$

orbits are attracted into the annulus for any θ
and $\frac{d \theta}{d t} \neq 0$ in annulus
therefore, limit cycle.

Problem Sheet 3 - Non Linearity, Chaos and Complexity Solutions

Sheet 3 Question 1

Lyapunov exponent.
For a general map $x_{n+1}=f\left(x_{n}\right)$

This has iterates $\quad x_{1} \ldots x_{n} \quad$ initial condition x_{0} so $x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right)$, etc.

For initially neighbouring points $\bar{x}_{0}=x_{0}+\varepsilon_{0}, x_{0}$ with $\varepsilon_{0} \ll 1$.
After one iterate $\bar{x}_{1}=f\left(\bar{x}_{0}\right)=f\left(x_{0}+\varepsilon_{0}\right)=f\left(x_{0}\right)+\varepsilon_{0} \frac{d f}{d x}\left(x_{0}\right) \ldots$ by Taylor expansion.

Now, two points separated by ε_{1} after one iterate, i.e.
$\bar{x}_{1}=x_{1}+\varepsilon_{1}=f\left(x_{0}+\varepsilon_{0}\right)=f\left(x_{0}\right)+\varepsilon_{0} \frac{d f}{d x}\left(x_{0}\right)+\ldots \quad$ so $\quad \varepsilon_{1}=\varepsilon_{0} f^{\prime}\left(x_{0}\right)$ to first order in ε_{0}.
Generally, for $j^{\text {th }}$ iterate we have $\bar{x}_{j}=x_{j}+\varepsilon_{j}$ thus $\varepsilon_{j}=\varepsilon_{j-1} f^{\prime}\left(x_{j-1}\right)$ provided $\varepsilon_{j} \ll 1 \quad 0<j<n$.

Then,

$$
\begin{aligned}
\bar{x}_{n}=x_{n}+\varepsilon_{n} & =x_{n}+\varepsilon_{n-1} f^{\prime}\left(x_{n-1}\right) \\
& =x_{n}+\varepsilon_{n-2} f^{\prime}\left(x_{n-2}\right) f^{\prime}\left(x_{n-1}\right) \\
& =x_{n}+\varepsilon_{0} f^{\prime}\left(x_{0}\right) f^{\prime}\left(x_{1}\right) \ldots . f^{\prime}\left(x_{n-1}\right)
\end{aligned}
$$

or

$$
\begin{gathered}
\bar{x}_{n+1}=x_{n+1} \varepsilon_{0} f^{\prime}\left(x_{0}\right) \ldots f^{\prime}\left(x_{n}\right) \\
\bar{x}_{n}=x_{n}+\varepsilon_{0} \prod_{j=0}^{n-1} f^{\prime}\left(x_{j}\right)
\end{gathered}
$$

Now write

$$
f^{\prime}\left(x_{j}\right)=e^{\ln \left[f^{\prime}\left(x_{j}\right)\right]}
$$

and neglecting signs of f^{\prime} we can write

$$
\bar{x}_{n}=x_{n}+\varepsilon_{0} \exp \left[\sum_{j=0}^{n-1} \ln \left|f^{\prime}\left(x_{j}\right)\right|\right]
$$

and hence Lyapurov exponent defined as: $\quad \lambda=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \ln \left|f^{\prime}\left(n_{j}\right)\right|$
which is a measure of exponential divergence

$$
\bar{x}_{n}-x_{n}=\varepsilon_{0} e^{n \lambda}
$$

If $\lambda<0$ then $\bar{x}_{n} \rightarrow x_{n}$ for large n, converging - this is attractor (attractive fixed point).
If $\lambda>0-$ exponential divergence for large n. repellor (repulsive fixed point).

Sheet 3 Question 2

The map

$$
\begin{array}{ll}
x_{n+1}=\frac{x_{n}}{a} & 0<x<a \\
x_{n+1}=\frac{\left(1-x_{n}\right)}{(1-a)} & a<x<1
\end{array}
$$

where $0<a<1$.

Consider fixed points

$\bar{x}=0$ and
\bar{x} in the range $[a, 1]$
ie: $\bar{x}=\frac{1-\bar{x}}{(1-a)}$
$\bar{x}-a \bar{x}=1-\bar{x}$ or $(2-a) \bar{x}=1$
thus fixed points $\bar{x}=0 \quad \bar{x}=\frac{1}{(2-a)}$.
Stability
Linearize $\quad x_{n}=\bar{x}+\delta x_{n} \quad x_{n+1}=\bar{x}+\delta x_{n+1}$.
sub into $\quad x_{n+1}=\frac{\left(1-x_{n}\right)}{(1-a)}$

$$
\begin{aligned}
& \bar{x}+\delta x_{n+1}=\frac{\left(1-\bar{x}-\delta x_{n}\right)}{1-a} \\
& \not x+\delta x_{n+1}=\frac{(1-\bar{x})}{(1-a)}-\frac{\delta x_{n}}{(1-a)}
\end{aligned}
$$

ie: $\quad \delta x_{n+1}=\frac{-\delta x_{n}}{1-a}=\frac{\delta x_{n}}{(a-1)} \quad$ hence unstable for all $0<a<1: \quad \delta x_{n+1}=\frac{1}{(a-1)^{n+1}} \delta x_{0}$
$M^{2}(x)$

Find "folding points" such that $M^{2}(x)=0$ or $M^{2}(x)=1$.
$M^{2}(x)=0$
Clearly, $M^{2}(x)=0$ for $M(x)=0$ or 1 ie: $M(x)=0 \quad x_{R}=0 \quad$ or $\quad x_{R}=a$
$M^{2}(x)=1$
Since $M(a)=1$ we seek x_{R} such that $M\left(x_{R}\right)=a$.
Two possibilities

$$
\begin{array}{lll}
0<x<a & M(x)=\frac{x}{a} \quad a=\frac{x_{R}}{a} \quad x_{R}=a^{2} \\
a<x<1 & M(x)=\frac{1-x}{1-a} \quad a=\frac{1-x_{R}}{1-a} \quad x_{R}=1-a(1-a)
\end{array}
$$

Sketch:

$$
\begin{aligned}
& \text { here } \quad a>\frac{1}{2} \quad \text { thus } \\
& a^{2}>\frac{a}{2} \text { (try it!). } \\
& 1-a(1-a)<\frac{1-a}{2}
\end{aligned}
$$

Same topology as symmetric case (stretching and folding) just asymmetric.

Lyapunov exponent for $M(x)$

Fixed point is in the range $[a, 1]$

$$
\begin{aligned}
& \text { so } \quad M(x)=\frac{(1-x)}{(1-a)} \\
& \frac{d M}{d x}=\frac{1}{1-a} \quad \text { and } \quad 0<a<1
\end{aligned}
$$

so $\quad \frac{d M}{d x}>1 \quad$ hence $\lambda=\ln \left[\frac{1}{1-a}\right]$
$\lambda>0$ exponential divergence
Special cases $\quad a=0$ and $a=1$
$\underline{a=0}$
$M(x)$

Now $M(x)=1-x$
fixed point $\bar{x}=1-\bar{x}$

$$
\bar{x}=\frac{1}{2}
$$

gradient $\frac{d M}{d x}=-1$ everywhere.

Lyapunov exponent $\lambda=\ln |-1|=0$

$$
\lambda=0 \text { is marginally stable }-
$$

now

$$
M(\bar{x})=\bar{x}=\frac{1}{2}
$$

for any

$$
\begin{aligned}
& 0<x<1, \quad x \neq \frac{1}{2} \quad \text { write } \quad \bar{x}_{0}=\bar{x}+\varepsilon \\
& M\left(x_{0}\right)=1-\bar{x}-\varepsilon=x_{1} \\
& M^{2}\left(x_{0}\right)=M\left(x_{1}\right)=1-(1-\bar{x}-\varepsilon)=\bar{x}+\varepsilon=x_{0}
\end{aligned}
$$ hence $\quad M^{2}\left(x_{0}\right)=x_{0} \quad$ these are period two orbits

graphically
or by simply calculating $M^{2}(x)=1-(1-x)=x$

$\mathrm{a}=1$
$M(x)=x$ again, a return m
Note that $\frac{d M}{d x}=\frac{d(x)}{d x}=1$ so Lyapunov exponent $\gamma=\ln |1|=0$ marginally stable true for both orbits of $M(x, a=1)$ and of $M^{2}(x, a=0)$ [period 2 orbits of M]

Sheet 3 Question 3

We have

$$
\frac{d g}{d t}=\lambda_{g} g-e R \quad \frac{d R}{d t}=\lambda_{b} g-\alpha F R
$$

and from Lotka-Volterra equations $\frac{d F}{d t}=(\eta-\beta R) F$
fast growing grass $\lambda_{g} \gg \lambda_{B}$
then we assume the grass is enslaved to the rabbits -

$$
\frac{d g}{d t}=0 \quad \lambda_{g} g-e R=0 \quad g=\frac{e R}{\lambda_{g}}
$$

giving $\frac{d R}{d t}=\frac{e \lambda_{b}}{\lambda_{g}} R-\alpha F R=(\lambda-\alpha F) R$

$$
\text { where } \lambda=\frac{e \lambda_{b}}{\lambda_{g}}
$$

which are the original Lotka-Volterra equations so dynamics of foxes and rabbits are the same and the grass is enslaved to rabbits.

Problem Sheet 4 - Non Linearity, Chaos and Complexity Solutions

Sheet 4 Question 1

(a) $B=0$ case

$$
\begin{aligned}
& F(M)=\alpha\left(T-T_{c}\right) M^{2}+\beta M^{4} \\
& \quad \text { minima } \quad M=0, M= \pm \sqrt{\frac{\alpha\left(T_{c}-T\right)}{2 \beta}}
\end{aligned}
$$

Thus, if we normalise M to some $\tilde{M} \quad M^{*}=\frac{M}{\tilde{M}}$

$$
M^{*}= \pm \sqrt{\frac{\alpha T_{c}}{2 \beta \tilde{M}^{2}}\left(1-\frac{T}{T_{c}}\right)}
$$

Two dimensionless groups

$$
\pi_{1}=\frac{\alpha T_{c}}{2 \beta \tilde{M}^{2}} \quad \pi_{2}=\frac{T}{T_{c}}
$$

$B=B_{0}$ case
$F(M)=\alpha\left(T-T_{c}\right) M^{2}+\gamma M^{3}+\beta M^{4}$ extrema at $M=0$ and

$$
\frac{M=-3 \gamma \pm \sqrt{9 \gamma^{2}-32 \alpha \beta\left(T-T_{c}\right)}}{8 \beta}
$$

Normalise M to $\tilde{M} \quad M^{*}=\frac{M}{\tilde{M}}$

$$
M^{*}=\frac{-3 \gamma}{8 \beta \tilde{M}} \pm\left[\frac{9 \gamma^{2}}{(8 \beta \tilde{M})^{2}}-\frac{32 \alpha \beta T_{c}}{(8 \beta \tilde{M})^{2}}\left(1-\frac{T}{T_{c}}\right)\right]
$$

3 dimensionless groups

$$
\pi_{1}=\frac{3 \gamma}{8 \beta \tilde{M}} \quad \pi_{2}=\frac{32 \alpha \beta T_{c}}{(8 \beta \tilde{M})^{2}} \quad \pi_{3}=\frac{T}{T_{c}}
$$

(b) Microscopic model
Quantity dimension what it is

m	$\left[M^{c}\right]=\frac{[M]^{1 / 2}}{[L]^{1 / 2}[T]}$	Magnetization/spin
η	$[L]$	Spin separation
L_{0}	$[L]$	box size
Δt	$[T]$	time step

| ε | $\left[M^{c}\right][T]^{-1}$ |
| :---: | :---: | | average charge in magnetization |
| :--- |
| due to random fluctuations per |
| spin |

In absence of B_{0}
$N=5 \quad R=3$
2 groups

With applied B_{0}
$N=6$
$R=3$
3 groups
These are:

$$
\pi_{1}=\frac{\varepsilon}{m} \Delta t \quad \pi_{2}=\frac{L_{0}}{\eta} \quad \pi_{3}=\frac{B_{0}}{m}
$$

so in absence of applied B_{0} we have π_{1} and π_{2} only. With applied B_{0} we have π_{3} as well.
Then we can identify

$$
\frac{\varepsilon}{m} \Delta t \equiv \frac{T}{T_{c}} \quad \frac{\alpha T_{c}}{2 \beta \tilde{M}^{2}} \equiv \frac{L_{0}}{\eta} \quad \frac{3 \gamma}{8 \beta \tilde{M}} \equiv \frac{B_{0}}{m} .
$$

Sheet 4 Question 2

Fireflies

Fly around at random, and each has a "clock" to tell it when to flash
firefly flashes as $t=12$ say......

all start at random time τ_{s}
flash duration τ_{d}
Quantity diversion what it is

τ_{c}	$[T]$	cycle length
$\left\langle\tau_{s}\right\rangle$	$[T]$	average start time
τ_{d}	$[T]$	duration
R	$[L]$	interaction radius
N_{f}	-	No of flashes to reset
L_{0}	$[L]$	Size of box
Δt	$[L][T]^{-1}$	speed
v	-	number of fireflies
N	$R=2$	

There are some 'trivial' and 'non-trivial' parameters here.
Trivial
$\pi_{1}=\frac{R}{L_{0}} \quad$ if $\quad \pi_{1}>1 \quad$ fireflies all see each other
$\pi_{2}=\frac{v \Delta t}{L_{0}} \quad \pi_{2}>1 \quad$ fireflies cross box in one timestep
$\pi_{3}=\frac{R}{v \Delta t} \quad \pi_{3}<1 \quad$ fireflies rush past each other
$\pi_{4}=\frac{\tau_{d}}{\tau_{c}} \quad \pi_{4}>1 \quad$ fireflies 'always switched on'
$\pi_{5}=\frac{\tau_{s}}{\tau_{c}} \quad$ - only relevant if $\underline{\text { no }}$ synchronization otherwise system 'forgets' initial phase
$\pi_{6}=\frac{\tau_{c}}{\Delta t}$
$\pi_{7}=\frac{\tau_{d}}{\Delta t}$
need $\pi_{6}, \pi_{7} \gg 1 \quad$ to resolve the dynamics

Thus, to realise the 'interesting' dynamics on computer we need

$$
\pi_{1} \ll 1, \quad \pi_{2} \ll 1, \quad \pi_{3} \ll 1, \quad \pi_{4} \ll 1, \quad \pi_{6,7} \gg 1
$$

In this case these are 'trivial'.

Non-trivial parameters

For synchronization a firefly must see N_{f} flashes within R - at least 'some of the time'.
Let number of flashes seen with R be α

$$
\alpha=\frac{R^{2} N}{L_{0}^{2}} \frac{\tau_{d}}{\tau_{c}}
$$

want $\alpha \geq N_{f}$ for synchronization.
Thus, non-trivial parameters are $\pi_{1}=\alpha, \pi_{2}=N_{f}$ and for synchronization $\alpha \geq N_{f}$.

