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Problem Sheet 1 – Non Linearity, Chaos and Complexity Solutions

Sheet 1 Question 1

(i) Particle motion in B field

d d
m q

dt dt
  

v r
v B v

Normalise * *

0

,
v

v t t T
v

  * *
0r r L B B B 

sub in

*
0d v

m
v

0*
q v

dt T
 * *

0Bv B

*
* *0

*
.

d qB
T

dt m
 

v
v B which is normalised if

1

0 1qB
T

m


 

  
 

also
*

*
0*

d L
v

dt T


r
v ie: 0

L
v

T


so 0
0

v
L v T 



solving the equations yields circular motion about B with frequency  , radius L.

Frequency is independent of velocity (particle energy), whereas gryroradius (L) depends on
velocity.

(ii) Wave equation (ID here)

2 2

2 2 2

1

c t x

  


 

Normalise:
2 2

0 0
2 2 2 *2 2

1 * *

*c t T x L

    


 

which is normalised (dimensionless) if

2 * 2 *

*2 2t x

  


 

L
c

T
 .

Therefore, c is characteristic velocity of all structures regardless of length scale and is

independent of amplitude  . Solutions are of the form    f x ct g x ct     .
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(iii) Conservation of quantity Q with number density n

 
 .

nQ
nQ

t


 


v ,

where Q is carried by "particles" of density n.

Normalise

 
 

* *

* * *
0 0* 3 3

1 1 1 1
.

n Q L
Q n Q Q

t T L L L T


 


v ie

 
*

0
L
Tv

 
v v

v

then:    * * * * * *

*
.n Q n Q

t


 


v .

There is no characteristic scale if 0

L
v

T
 equation just specifies that structures on all length

and timescales are conserved.
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Sheet 1 Question 2

2 3 4
0 1 2 3 4F F F M F M F M F M    

can always be written as

     
2 3 4

0 2 0 3 0 4 0' ' ' 'F F F M M F M M F M M      

since both are general polynormals up to degree 4 then 0M M M  is the required

transformation.

(i) For symmetry 3 0F  .

We then have (dropping 's)

    2 4
0 cF M F T T M M    

extrema

    
232 4 2 2c c

F
T T M M M T T M

M
   


     



ie: at 0M  or
 2

2
cT T

M 



 .

But M is real so:

 
2
cT T

M





  is an extreme for cT T

look for minima

 
2

2

2
2 12c

F
T T M

M
 


  


.

0 :M  min for cT T max for cT T .

 

 
2

2

2

2 12

c

c

T T
M

F
T T

M





 


 


  



 6

2
cT T




 4 cT T  

min for cT T max for cT T

pitchfork bifurcation at cT T
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As we go from cT T to cT T system "falls" into one of the potential walls – which one is

determined by fluctuations at cT T .

 
2
cT T

M





 

0M 

M

cT

T

F(M) F
cT T

 

M M

cT T
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(ii) Asymmetric, now 3 0F  

  2 32 3 4c

F
T T M M M

M
  


   



extrema now   20 2 3 4c

F
M T T M M

M
  


    



  23 9 4.2 .4
0,

2.4

cT T
M M

   



   
 

Two real values of M when

 29 32 cT T  

write M as
2 23 3

8
cM

  



  
 .

Consider

 
2

2

2
2 6 12c

F
T T M M

M
  


   



0M  is min for cT T .

For 0M  extrema given by   22 3 4 0cT T M M      which gives

2
2

2
3 8

F
M M

M
 


 


,

or
2

2 2

2
3 c

F
M

M
 


  



Then in addition to 0M  solution

2 2
c  2 real 0M  roots, one max, one min

2 2
c 

3

8
M






  2 32

9
c cT T


  

 cT T .
2 2

c  - M imaginary no max/min.

Also at 2 3 3
0

8
c cT T M

 




 
   ie:

0 (a)

6
(b)

8

M

M
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(b) is   ve root hence
2

2
0 is a min

F

M






(a) is inflexion. Finally, for 2 0c  2 real roots, both min and 0M  is max

graphically

2
c

2

cT T
0 2 2

c 

M

ve root

ve root
0M 

minima

cT T
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 – going from cT T }

o – going from cT T }

Now fluctuations are unimportant.

 o

F

2 2

c

c

T T

 





M

 o

2 2

c

c

T T

 





M



F

F

0

c

c

T T







M

o

 o

F

M

cT T

hysteresis
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iii) Van der Vaal

Expand for 1bm 
using

 
2 3

ln 1 .....
2 3

bM bM
bm bM

    
       

     


Substitute into F

T
F bM

b
   

2 3 3 4
2

2 3 2 3

bM bM bM bM
bM MT

        
             
         

2

2

aM


2 4
2 3 3

2 2 6 12

bT a b TM
M M T b

 
    

 

then  
2 2

c

bT a b a
T T T

b


  
    

 

c

a
T

b
 .



PX3910 Nonlinearity Chaos Complexity solutions to problems [S. C. Chapman] Page 9 of 30

Sheet 1 Question 3

(i) sin
dq

q
dt



fixed points sin 0 integerq q n n 

linearize about fixed points

 q t q q 

 sin sin cos
d q

q q q q
dt


    cos sin 0q q 

sin ,cos 0q q q    as q is small

then  1
Nd q

q
dt


 

solution is of form 0
stq q e 

s ve for n even – unstable
s ve for n odd – stable

Phase plane analysis

flow arrows ve q for
dq

ve
dt

 q increases with time

ve for
dq

ve
dt

 q decreases with time

 

sin q

q

stable

 unstable
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ii) 2dq
q q

dt
  

fixed points 2 0q q  

  0q q  

ie: 0q  or q



 .

Stability    q t q q t 

Sub in
     

   

2

2 22 0

d
q q q q q

dt

q q q q q

    

     

   

    

but 2 0q q  

So,
 

 2
d q

q q
dt


    ,

then, assuming that 0
stq q e 

we will have for 2 0s ve q   

for 2 0s ve q    .

Take , 0  

then 0q  is s ve , ie: unstable (repellor)

q



 is s ve , ie: stable (attractor)

Phase plane – sketch
dq

vz q
dt

neglect as small





q
0

2q q 
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Problem Sheet 2 – Non Linearity, Chaos and Complexity Solutions

Sheet 2 Question 1.

i) Undamped oscillator

2
2

2
sin

d x
x

dt
  .

Can integrate this once
dx

dt


2
2

2
sin

d x dx dx
x

dt dt dt
  

2

21
cos constant.

2

dx
x E

dt


 
    

 

To obtain the dynamics – obtain fixed points, phase plane, etc.

first write as two coupled first order DE

2 sin
dx dy

y x
dt dt

  

fixed points 0, sin 0 ory x x n   .

Stability

Linearize
y y y x x x

y

 



   



then

 

 

2

2

sin

sin

d x d y
y x x

dt dt

n x

 
  

  

   

  

use

 

 

sin sin cos cos sin

sin sin

A B A B A B

n x n  

  

  cos cos sin

0

x n x  



   cos 1 and sin since small
n

n x x x     

so  2 1
nd x d y

y x
dt dt

 
      .

Sufficiently simple to go direct to second order DE
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ie:  
2

2

2
1

Nd x
x

dt


    for which we know solutions of form t tx Ae Be    .

Then n even

2
2

2

i t i td x
x x Ae Be

dt
 

       ,

n odd

2
2

2

t td x
x x Ae Be

dt
 

       .

So, n even are centre fixed points

x is oscillatory and i t td x
y i Ae i Be

dt
 

     

recall 2

i

i e


 and 2

i

i e


  (complex numbers ix iy re   )

So,
   2 2

i wt i wt
y Ae Be

 

  
  

 

- out of phase
2


with x

n odd
t t

t t

x Ae Be

y Ae Be

 

 



  





 

 

Saddle point

Separatrix has lines given by

t

t

y Ae
t

x Ae





 



  

t

t

y Be
t

x Be





 









     .

Topology: constant of the motion defines the phase plane orbits: and

2
2 cos

2

y
E x  has symmetry in y and x

Phase plane: see lecture notes and handouts for sketch.

Separatrix has cos 1x x     when 0y  , 2
cE  on the separatrix.

0, 0A B 

0, 0A B 

y
, 0A B 

x

0,

0

A

B
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ii) Damped oscillator

2
2

2
sin 0

d x dx
x

dt dt
   

Now we will have first order DE:

dx
y

dt


2 sin
dy

x y
dt

    .

Fixed point 20, sin 0y x  ,

ie: as undamped case 0,y x n  .

Stability analysis

y y x x x   

So  2 1
nd x d y

y y x
dt dt

 
         (as before – same identities).

Now more complicated – solve using general formula as in lectures (given in detail here).

We write
x

y






 
  
 

x

then pair of equations are just

a bd

c ddt




 
    

 

x
J x J

where we use notation

d x
a x b y

dt


  

 2

0 1

1
n

 

 
      

J

d y
c x d y

dt


  

We then have solutions of the form

1 2
S t S tC e C e  

  x u u
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where the eigenvalues s are solutions of 0
a s b

c d s






ie:     20 a s d s bc s s a d ad bc        

thus      
21

4
2

s a d a d ad bc     

here, this is  2 21
4 1

2

n
s         .

Two cases:

n odd 2 21
4

2
s       

n even 2 21
4

2
s       

n odd:

s are real, distinct.
2

2

1 4
1

2
s


 




  
    

  

for orve ve  

s are real and of opposite sign – saddle points (as before).

n even:

s may be complex
2

2

1 4
1

2
s


 




  
    

  

complex if 2 24  otherwise real.

For 0   decay to stable fixed point

0   growth – unstable fixed point

If 2 24  these are spiral.

Note that if 0  we have s    n odd – saddle and

s i   n even- circle fixed points

So, essentially here, circle points  spiral fixed points for 2 24  .
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Topology

Look for symmetries in original DE.

2
2

2
sin 0

d x dx
x

dt dt
   

   
2

2

2
1 sin 1 0

d x dx
x x x

dt dt
        

Same equation x x   is this symmetry by reflection? Check what happens to y (below).

t t    
2

2 2

2
1 1 sin 0

d x dx
x

dt dt
     

t t is    ,

ie: damping and increasing t  growth and decreasing t

Sufficient to sketch one of these and note that
dx

y
dt

 so x x  gives y y rotational symmetry.

See course handout for sketch
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Sheet 2 Question 2

Lotka-Volterra

In our original notation

 
dx

y x
dt

  

 
dy

x y
dt

   

Fixed points

 

 

0 0 or

0 0, or

y x x y

x y y x


 




 


   

    

ie: 0, 0 ,x y x y
 

 
    .

Stability – linearise

x x x y y y    

     
d x

x x y y x x
dt

x y x


    

 

    

   y x x y x y          

 
d x

y x x y
dt


      

     
d y

y y x x y y
dt

y x y


    

 

     

      y x x y x y           

 
d y

x y y x
dt


       

again – can use formula but shown in full here: write in the form
d

dt
  x J x

then in notation of notes
 

 
y xa b

y xc d

  

  

   
        

J

0

0
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with eigenvalues

     
21

4
2

s a d a d ad bc      

Consider two fixed points

0, 0x y 
0

0





 
   

J

     
21

4
2

s          

 
22 22 4         

    1

2
s        

ie: s s     saddle point.

Consider fixed point

x y
 

 
 

0

0









 
 
 
 
  

J

1
0 4

2
S

 

 





    
       

     

  

ie: wholly imaginary – centre fixed point.

Topology: no t symmetry since

 
dx

t t y x
dt

     

 
dy

x y
dt
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Similarly, no symmetries in x y except change of sign in , , ,    – unrealistic.

Phase plane:

   ln lnC R R F F      

1dC dR dR dF dF
F

dt R dt dt dt F dt


     

     F R F R            

0 .

Hence C is a constant and different values of C specify trajectories (closed) about the centre fixed
point.



x

y
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Sheet 2 Question 3

Proof of existence of a limit cycle:

given    2 2 2 22 ,
dx dy

x y x x y x y y x y
dt dt

       

convert to plane polar coordinates ,r  use

cos sinx r y r  

and 2dx dy dr dy dx d
x y r x y r

dt dt dt dt dt dt


   

then 2 d
r x x y

dt


  2(y x 2 )y y x  

 
2(y x x  22 )y 

 

2 2 3 2 4 3cos sinx y xy r r      

dr
r x x y

dt
  2 2( 2 )x x y y x    

2 2( )y y x y    

2 2 4 2 2 4

2 2 2 2 2 2 2

3

( )

x y x y x y

x y x y x y

    

    

2 4 4 2 2cos sinr r r     .

Identity:

 sin sin cos cos sin

sin 2 2sin cos

A B A B A B

A A A

  



Giving

2 2 4 2

2 4 2

1
sin sin 2

2

1
1 sin 2

4

d
r r r

dt

dr
r r r

dt


 



 

 
   

 

now  2 4 2 2 21
1 sin 2 1

4

dr
r r r r r B

dt


 
     

 

Bracket B is bounded  5
41,

B
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Minimum value of 1B  has 0
dr

dt
 for 1r 

Maximum
5

4
B  has 0

dr

dt
 for

4

5
r 

If 1, 0
dr

r
dt

 

If
4

, 0
5

dr
r

dt
 

orbits are attracted into the annulus for any 

and 0
d

dt


 in annulus

therefore, limit cycle.

B
5

4

1



hence

0

0 0

for any

dr
r

dt

dr
r

dt



 

 

1r 

4

5
r 
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Problem Sheet 3 – Non Linearity, Chaos and Complexity Solutions

Sheet 3 Question 1

Lyapunov exponent.

For a general map  1n nx f x 

This has iterates 1... nx x initial condition 0x so    1 0 2 1,x f x x f x  , etc.

For initially neighbouring points 0 0 0 0,x x x  with 0 1  .

After one iterate        1 0 0 0 0 0 0 ...
df

x f x f x f x x
dx

      by Taylor expansion.

Now, two points separated by 1 after one iterate, i.e.

     1 1 1 0 0 0 0 0 ...
df

x x f x f x x
dx

         so  1 0 0f x   to first order in 0 .

Generally, for thj iterate we have j j jx x   thus  1 1j j jf x   
 provided 1 0j j n    .

Then,

 

   

     

1 1

2 2 1

0 0 1 1....

n n n n n n

n n n n

n n

x x x f x

x f x f x

x f x f x f x

 





 

  



   

  

   

or

   

 

1 1 0 0

1

0
0

...n n n

n

n n j
j

x x f x f x

x x f x





 





 

  

Now write    ln jf x

jf x e
 
  

and neglecting signs of f  we can write  
1

0
0

exp ln
n

n n j
j

x x f x




 
   

 


and hence Lyapurov exponent defined as:  
1

0

1
lnlim

n

j
n j

f n
n




 

 

which is a measure of exponential divergence 0
n

n nx x e  

If 0  then n nx x for large n, converging – this is attractor (attractive fixed point).

If 0  – exponential divergence for large n. repellor (repulsive fixed point).
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Sheet 3 Question 2

The map 1
n

n

x
x

a
  0 x a 

 
 1

1

1
n

n

x
x

a






1a x 

where 0 1a  .

Consider fixed points 0x  and

thus fixed points
 

1
0

2
x x

a
 


.

Stability

Linearize 1 1n n n nx x x x x x      .

sub into
 
 1

1

1
n

n

x
x

a







 
1

1

1
n

n

x x
x x

a


 

 
 



x
 
 1

1

1
n

x
x

a
 


 

  1
nx

a






ie:
 1

1 1
n n

n

x x
x

a a

 
 


 

 
hence unstable for all 0 1a  :

 
1 01

1

1
n n

x x
a

  




1nx 

1

x

nx
a

x in the range  ,1a

ie:
 
1

1

x
x

a






1x ax x  

or  2 1a x 
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 2M x

Find "folding points" such that  2 0M x  or  2 1M x  .

 2 0M x 

Clearly,  2 0M x  for   0M x  or 1 ie:   0 0 orR RM x x x a  

 2 1M x 

Since   1M a  we seek Rx such that  RM x a .

Two possibilities

  20 R
R

x x
x a M x a x a

a a
    

   
1 1

1 1 1
1 1

R
R

x x
a x M x a x a a

a a

 
      

 
Sketch:

1

here
1

2
a  thus

2

2

a
a  (try it!).

 
1

1 1
2

a
a a


  

Rx a Rx 1

Same topology as symmetric
case (stretching and folding)
just asymmetric.
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Lyapunov exponent for  M x

Fixed point is in the range  ,1a

so  
 
 
1

1

x
M x

a






1

1

dM

dx a



and 0 1a 

so 1
dM

dx
 hence

1
ln

1 a


 
   

0  exponential divergence

Special cases 0a  and 1a 

0a 

 M x

Lyapunov exponent ln 1 0   

0  is marginally stable –

now  
1

2
M x x 

for any
1

0 1,
2

x x   write 0x x  

 0 11M x x x   

     2
0 1 01 1M x M x x x x        







1

1

2

1

2 1 n

Now   1M x x 

fixed point 1x x 
1

2
x 

gradient 1
dM

dx
  everywhere.
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hence  2
0 0M x x these are period two orbits

  1M x

or by simply calculating    2 1 1M x x x   

a=1

( )M x x again, a return m

Note that
( )

1
dM d x

dx dx
  so Lyapunov exponent ln 1 0   marginally stable

true for both orbits of  , 1M x a  and of  2 , 0M x a  [period 2 orbits of M]

1x 0x 1

graphically

 2M x

1

0x
1

This is a return map

 2M x x

0x
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Sheet 3 Question 3

We have

g

dg
g eR

dt
  b

dR
g FR

dt
  

and from Lotka-Volterra equations  
dF

R F
dt

  

fast growing grass g B 

then we assume the grass is enslaved to the rabbits –

0 0g

g

dg eR
g eR g

dt



   

giving  b

g

edR
R FR F R

dt


  


   

where b

g

e





which are the original Lotka-Volterra equations so dynamics of foxes and rabbits are the
same and the grass is enslaved to rabbits.
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Problem Sheet 4 – Non Linearity, Chaos and Complexity Solutions

Sheet 4 Question 1

(a) 0B  case

    2 4
cF M T T M M   

minima
 

0,
2
cT T

M M





  

Thus, if we normalise M to some * M
M M

M



*

2
1

2
c

c

T T
M

M T





 
   

 


Two dimensionless groups 1 222
c

c

T T

M T


 


 


.

0B B case

    2 3 4
cF M T T M M M      extrema at 0M  and

 23 9 32

8

cM T T  



    
.

Normalise *to
M

M M M
M




2
*

2 2

323 9
1

8 8 8

c

c

T T
M

M TM M

 

  

        
   

  
.

3 dimensionless groups

1 2 32

323

8 8

c

c

T T

M TM


  

 
  

 
.
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(b) Microscopic model

Quantity dimension what it is

m
 
   

1/2

1/2

c M
M

L T
    Magnetization/spin

  L Spin separation

0L  L box size

t  T time step

  
1cM T


  
average charge in magnetization
due to random fluctuations per
spin

0B cM  

 
   

1/2

1/2
since Tesla

M

L T

 
 
 
 

externally applied field

In absence of 0B 5N  3R  2 groups

With applied 0B 6N  3R  3 groups

These are:

0 0
1 2 3

L B
t

m m


  


    ,

so in absence of applied 0B we have 1 and 2 only. With applied 0B we have 3 as well.

Then we can identify

0 0
2

3

2 8
c

c

T L BT
t

m T M M m

 

  
   

 
.
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Sheet 4 Question 2

Fireflies

Fly around at random, and each has a "clock" to tell it when to flash

firefly flashes as t=12 say……

all start at random time s

flash duration d

Quantity diversion what it is

c  T cycle length

s  T average start time

d  T duration

R  L interaction radius

fN  No of flashes to reset

0L  L Size of box

t  T timestep

v    
1

L T
 speed

N  number of fireflies

9 2N R  7 parameters

(most are trivial)

cycle length c
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There are some 'trivial' and 'non-trivial' parameters here.

Trivial

1

0

R

L
  if 1 1  fireflies all see each other

2

0

v t

L



 2 1  fireflies cross box in one timestep

3

R

v t
 


3 1  fireflies rush past each other

4
d

c





 4 1  fireflies 'always switched on'

5
s

c





 – only relevant if no synchronization –

otherwise system 'forgets' initial phase

6

7

c

d

t

t













6 7, 1   to resolve the dynamics

Thus, to realise the 'interesting' dynamics on computer we need

1 2 3 4 6,71, 1, 1, 1, 1         .

In this case these are 'trivial'.

Non-trivial parameters

For synchronization a firefly must see fN flashes within R – at least 'some of the time'.

Let number of flashes seen with R be 

2

2
0

d

c

R N

L







want fN  for synchronization.

Thus, non-trivial parameters are 1 2, fN    and for synchronization fN  .

need

fraction of these ‘on’
number within R


