DATA MINING

MPAGS Astrophysical Techniques 2023

Kendall Ackley kendall.ackley@warwick.ac.uk

KNOWLEDGE DISCOVERY IN DATA DATA MINING

MPAGS Astrophysical Techniques 2023

Kendall Ackley kendall.ackley@warwick.ac.uk

Concepts

Data mining is an interdisciplinary field at the intersection of artificial intelligence, machine learning, statistics, and database systems

https://www.kdd.org/

Data mining applications

- Financial
 - predicting whether you'll pay a loan back
- Retail
 - showing you what you want to buy next
- Government
 - determining if you are a security threat
- Healthcare
 - estimating your risk of various diseases
- Sciences
 - knowledge discovery

Astronomical optical sky survey data sets

Last major photographic plate survey complete

 POSS-II (~3TB whole survey digitized)

Wide-field surveys

 ZTF (~1TB per night, plus 0.5-1 billion photometry measurements)

> 1990s >> 2000s >> 2010s >> 2020s >> 2020s

First major digital surveys begin

• SDSS (~10TB per year)

Next generation surveys

 LSST (~20TB per night, ~200PB whole survey)

Data resources – Optical sky (wide)

Survey	Area (fraction of sky)	Filters	Depth (mag)	URL
SDSS	~1/3 (northern)	ugriz	~22 (ugr) ~21 (iz)	https://www.sdss.org/
PTF/ZTF	~3/4 (northern)	gr	~20-21	https://irsa.ipac.caltech.edu/Missions/ptf.html https://irsa.ipac.caltech.edu/Missions/ztf.html
Legacy Survey	~1/3 (high Galactic latitudes)	grz	~25 (g) ~24 (r) ~23 (z)	https://www.legacysurvey.org
Pan-STARRS	~3/4 (northern)	grizy	~23 (gri) ~22 (z) ~21 (y)	https://panstarrs.stsci.edu/
SkyMapper	~1/2 (southern)	uvgriz	~20 (uz) ~22 (g,r) ~21 (i)	https://skymapper.anu.edu.au
ATLAS	~1/10 (southern)	ugriz	~22 (ui) ~23 (gr) ~21 (z)	https://astro.dur.ac.uk/Cosmology/vstatlas/
DES	~1/8 (southern)	grizY	~25 (gr) ~24 (iz) ~22 (Y)	https://www.darkenergysurvey.org/
EGaPS (= VPHAS+, IPHAS, UVEX)	~1/15 (Galactic plane)	UgriH a	~21 (gr)	https://www.vphasplus.org/ http://www.iphas.org/ https://www.astro.ru.nl/uvex/

Data resources – Optical sky (new)

Resource	Description	Depth (mag)	URL
ZTF brokers	User-friendly interfaces to large data streams of transient alerts (supernovae, novae, outbursts etc.). Will also host LSST alerts	gr~21	e.g. Lasair: <u>https://lasair.roe.ac.uk/</u> ALeRCE: <u>https://alerce.online/</u>
Gaia Alerts	Alerts are triggered by any Gaia source changing in brightness above some threshold	G~20	http://gsaweb.ast.cam.ac.uk/alerts/home
Transient Name Server (TNS)	IAU-designated repository for all discovery and classification reports of new transients		https://www.wis-tns.org/
Exoplanet Catalogues	Databases of exoplanet discoveries		http://www.openexoplanetcatalogue.com/ http://exoplanet.eu/catalog/

Data resources – Infrared sky (wide)

Survey	Area (fraction of sky)	Filters	Depth (mag)	URL
2MASS	~1	JHK	~16	https://irsa.ipac.caltech.edu/Missions/2mass.html
UKIDSS	~1/5	ЈНК	~18	http://wsa.roe.ac.uk/
VHS	~1/2	YJHK	~20	https://www.vista-vhs.org/
WISE	~1	3-22 micron	~17-8	https://wise2.ipac.caltech.edu/docs/release/allsky/

Data resources – Radio/UV/Xray sky (wide)

Survey	Area (fraction of sky)	Wavelengths	Depth	URL
FIRST	~1/4	~21cm	~1 mJy	https://sundog.stsci.edu/
GALEX	~1 (but significant gaps)	UV (135-280nm)	~20 mag	https://archive.stsci.edu/missions-and- data/galex
ROSAT	~1	Soft X-ray (~2 keV)	~3x10 ⁻¹² erg/cm ² /s	https://heasarc.gsfc.nasa.gov/docs/rosat/rosa t3.html
eROSITA (ongoing)	~1 (but practically 1/2 for open data)	Soft and Hard X-ray (2-30 keV)	~10 ⁻¹⁴ erg/cm ² /s	https://www.mpe.mpg.de/eROSITA

Data resources – Simulations

Resource	Content	URL
IllustrisTNS/ EAGLE/ Horizon-AGN	Hydrodynamical cosmological simulation	https://www.tng-project.org/ http://icc.dur.ac.uk/Eagle/ https://www.horizon-simulation.org/
BPASS	Binary stellar population synthesised SEDs	https://bpass.auckland.ac.nz/
CosmoSim	Semi-analytic cosmological simulations, galaxy catalogues	https://www.cosmosim.org/cms/data/

Data resources – Misc

Resource	Content	URL
Filter Profile Service	Standard format filter profiles for all major surveys to compare photometry, generate SEDs etc.	http://svo2.cab.inta-csic.es/theory/fps/
NIST Atomic Spectra Database	Atomic lines database for spectral line identification.	https://physics.nist.gov/PhysRefData/ASD/lines_form.html
ADS abstracts	Digital library portal for researchers in astronomy	https://ui.adsabs.harvard.edu/
NASA HEARSARC	Primary archive for NASA's (and other space agencies') missions studying electromagnetic radiation	https://heasarc.gsfc.nasa.gov/

Astronomical Data Warehouses

(Virtual Observatories)

- Virtual Observatory https://www.ivoa.net/astronomers
 - Sets standards for astronomical data to enable easier data warehousing
 - Links to various VO-compliant software
- Strasbourg <u>https://cds.u-strasbg.fr</u>
 - SIMBAD excellent "quick-look" tool for finding a wealth of information on objects
 - VIZIER very large collection of diverse astronomical catalogues
 - Often data associated with publications are hosted here
 - ALADIN Nice interactive sky atlas with plenty of integration to visualise SIMBAD/VIZIER data
- IRSA https://irsa.ipac.caltech.edu
 - Friendly interface to many large (mainly US) projects' databases
- MAST <u>https://archive.stsci.edu/</u>
 - Access to multiple space-based mission data archives (mostly NASA)
 - Gaia, JWST, XMM, SwiftUVOT, Hubble, TESS, Kepler, etc.

Databases 101

- Most data resources build on a "relational" database
 - A schema defines tables
 - tables define columns
 - columns can be linked between tables
- SQL is the language used to interrogate relational databases
 - Many variants!
 - Reasonably quick to learn enough for most use cases LOTS of resources online
 - e.g. select mjd, mag, mag_error, filter from photometry where name = "delta_scuti";
- Always refer to the schema and usage documentation for the data resource
 - Descriptions of tables and columns
 - Non-SQL (e.g. GUI) interfaces to searching
 - Example queries
 - e.g. <u>http://skyserver.sdss.org/dr16/en/tools/search/searchhome.aspx</u>

			users	
ngs		<u> </u>	id	ir
	int		first_name	varch
g	int		last_name	varcha
er_id	int		email	varcha
ie_id	int	: 		
			movies	
		Ģ	id	ir
			name	varcha
			description	te

Tools

- TOPCAT http://www.star.bris.ac.uk/~mbt/topcat/
 - Lots of features for querying a whole range of resources
 - Built in analysis such as plotting, statistics
- ALADIN https://aladin.u-strasbg.fr/
 - Excellent quick visualisation of survey imaging
 - Good catalogue querying tools
- Astroquery <u>https://astroquery.readthedocs.io/en/latest/</u>
 - Programmatic access to databases in python
 - close relation to astropy vastly streamlines retrieval to analysis

	import matplotlib.colors import LogNorm from matplotlib.colors import LogNorm from astroquery.esasky import ESASky
In [2]:	ESASky.list_maps()
Out[2]:	<pre>[u'INTEGRAL', u'NMM-BPIC', u'SUEANO, OPPICAL', u'SUEANO, OV); u'MST-ON-UV', u'HSTorbel', u'HSTorbel',</pre>
In [4]:	<pre>maps = ESASky.query_object_maps('M51') print(maps)</pre>
	TableList with 6 tables: '0:RMM-OM-OPTICL' with 10 column(s) and 4 row(s) '1:RMM-OM-UV' with 10 column(s) and 5 row(s) '2:HERSCHL' with 11 column(s) and 9 row(s) '3:ISO' with 7 column(s) and 6 row(s) '4:HST' with 11 column(s) and 7 row(s) '5:RMM-EPEC' with 9 column(s) and 6 row(s)
In []:	<pre>maps = ESASky.query_object_maps('13 29 52.7 +47 11 43') nr</pre>

Analysis (in python)

- Pandas DataFrames
 - Close representation of a database table in python widely used across data science
 - <u>https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe</u>
- Astropy Table
 - Human-friendly interfaces to data tables better to work with than raw numpy arrays
 - <u>https://docs.astropy.org/en/stable/table/</u>
- AstroML
 - Astro-specific Machine learning and data-mining tools
 - <u>http://www.astroml.org/</u>
- Scikit-learn
 - Accessible machine learning toolkit very easy to dive into
 - <u>https://scikit-learn.org/stable/</u>
- Tensorflow and Pytorch
 - Deep-learning toolkits significant learning curves but extremely powerful
 - <u>https://www.tensorflow.org/</u>
 - <u>https://pytorch.org/</u>

pandas