Lecture 2: Weak Interactions and
BEC

Previous lecture:

* |deal gas model gives a fair intuition for occurrence of BEC but
IS unphysical (infinite compressibility, shape of condensate....)

» Order parameter and its equation of motion
» Slow (low energy) scattering of atoms and interaction parameter

» Gross-Pitaevskii equation. Amplitude and phase of the order parameter

« Super current and superfluid velocity. Irrotational hydrodynamics.

 Solution of GPE in uniform and non-uniform case. Thomas-Fermi Approximation




Order parameter '

Density matrix

PV (x,y) = (T x)T(y) =3 eyl (x)va(y)

Field operator @(X) — Z Vo (X)&a

(07

Creation and annihilation operators
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Neglecting quantum fluctuations '

a=20 Ng = <€l$do> > 1

Neglect commutator [do, d(];] =1

&(]; — &0 = v/ NO - a (large) number

Classical field and quantum fluctuations:

U(x) = Wo(x) + 0¥ (x) = v/ Notbo(x) + »  ta(x)d

a0




Equation of motion '

2m

2
=[x [ vt i v oo «

L1 /dXdy\\iJ(x)\ZV(x - y)[¥(y)
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Interaction term

A

Replacing the field operator by its 'classical' part \IJ(X’ t) — \IIO (X, t)

and assuming slow changes of \IJO (X, t) we put

A

thw/ﬁwdx—wmmm2egmd&wﬁ%@w>

Vi(r)

Questions:
1. What is 'slow changes'?

2. What is the value of coupling?

g~ [ axvx)




Scattering theory

mi mo
Schrodinger equation for effective particle with reduced mass
*
m* = mima/(my +mo)

and relative coordinate I — Iy — I'9

h2k?

2m*

(~ V24 V) () = St

B 2m*




Asymptotic solution

Beyond the range 7°( of the interatomic potential the solution of the
Schrdédinger equation simplifies

\
1 etkr Incoming current density
h(r) = e + f(0) — B ey TR
T J=—lmp"Vip = — =v
\ scattering amplitude




Scattering Amplitude

identical particles (bosons/fermions) Q v

do = |f(6) + f(r — 0)[2dD /7r/—9




Partial waves

Z ]Dl COS 9 Xkl( ) ]Dl (33’) - Legendre polynomials

Radial equation

_d2Xl~cl I(1+1) om*
dr? r?




Comparison

e’ikr .
f(@) . — w(r) o e’LkTCOSH _
oC —1 —25 . . | |
Z (3089 i (ezkr—l—Zzél _ e—zkr+z7rl)
21KT
[=0

_ ZPZ(COS 9) 222"!;?41 (eik:'r o e—z’k'r‘—|—z’7rl)

Only outgoing wave Al — (2[ + 1)/L‘le’i51




Scattering amplitude

=— ) (20+1)P, 2000 _
710) = g 3@+ DA(os 6 —1)
™ o A o0
o= 27T/0 | £(0)]* sin0d = k—g ;(2[ + 1) sin? §;
bosons: [ =0,2,4,... fermions: [ =1,3,5, ...

phase shifts (Sl = (5[(]{)

must be calculated from the solution of the Schrddinger equations.

The situation becomes simpler if the energy of scattered particles is small....




Slow collisions

For k’ro < ] there exists a parametrically large region

ro << r << 1/k

where right hand side "~ kz IS not important and V(’I“) ~ (:

Analysis of the solutions for each [ gives

1

_ ﬁ(QZiél . 1) -~ le
(}

Ji

And one neglects all { > (




S-wave amplitude

dQXko
dr?

On the other hand one can already use the asymptotic form of wavefunction

— 0 Xko = co(l —1/a)

Xro = €0 sin (kr + &y) = €™ (sin 6y + k cos or)

co = €29 sin &, tan dg ~ 09 = —ak ~ fok




Born approximation

To calculate @ one has to solve Schrodinger equation for 77 < 7'

For small interaction potential V(I‘) perturbation theory gives

m*
2mh?

Details of the potential are not important for small energy scattering as long
as they yield the same value of the scattering length.

A4 2
Let us define an effective potential Ve F = nha ) (r)

m

fo — —a = dI‘V(I‘)

giving the same value of scattering length as V(I‘) non-perturbatively




Dilute atomic gas

Below BEC transition

k~kp=1/Ar < nt/?
And collisions are always slow: k’l“o <1

Interatomic interactions can be safely characterised by the corresponding
scattering length @

Weak interactions (diluteness) condition is the condition on gas parameter

nlal® < 1




Gross — Pitaevskil Equation

Replacing the field operator by its ‘classical’ part \if(X, t) — \IIO (X, t)

and assuming slow changes of \IIO (X t) over the lenghts ~ @
we obtain GPE:

0 h2
1h— \IIO(X t) — __VQ + U(X t) +g|\110(X)|2 \IIO(X, t)
ot 2m
2
with coupling constant g = de%ﬁ(y) _ 4dmh*a
m

V(X), ‘/e (X) — g5(X) have the same scattering length




Condensate density and phase

The order parameter \IJO (X, t) has meaning of macroscopic wavefunction

[ axlwal = Vo

Condensate density 1o (X) — |\I]O (X) ‘2

Moreover the macroscopic wavefunction has a PHASE

o (x,t) = /no(x, t)e? 1)




Phase and current

Multiplying Gross Pitaevskii Equation

.0 h?
ih=-Wo(x,1) = | =5 =V + U(x,t) + g|¥o(y)[*| Yo(x,1)

by its complex conjugate and integrating by parts one gets continuity equation

0 :
&nO(XJ t) +V '.](XJ t) =0

for density and supercurrent

h h
i) = 50— (Vo Vo — W VW) = ng——VS

2zm




Hydrodynamic form of GPE

Substituting 'polar’ representation of order parameter

o (x,t) = /no(x, t)e? ot

into GPE and separating real and imaginary parts

gquantum pressure




Superfluid velocity

Vs(X,t) = EVS(X, t)

m

h
is irrotational, i.e. V X Vg = —V xVS=0
m

for example consider uniform rotation V(I‘) = Xr

cannot be described by velocity field V(X t)

- rotation can only enter in form of singular points of phase @

where no (X) — ()




Vortex

r
Cylindrical coordinates vV Cb
U, (r,¢) = [Ts(r)]e™*® L, =hsN ’
R X h
Vs:hlas :Efqb %Vs.dlzgws_
mr 0@ mr m

h

V X vy =21s—04(r)2
m




Vortices

Superfluid velocity behaves differently from
rigid rotation ‘

Vortex configuration costs more energy °r |

AE = FE,—1 — Fs—g

But can be favoured in the rotating frame J. Dalibard, 2001

Erot — EO — QLz

above critical rotation QC



Time dependence and chemical
potential

Density matrix at large distances

@T)¥(y) = (FE))N(I() = TP

o = (U) = (N|¥|N +1)

Wo(t) = e H/R(N|T|IN + 1)

Chemical potential M= EN—|—1 — bn




* FEg=

Uniform case

Non Linear Schrédinger Equation

—;—mVQ\Ifo(X) — pPo(x) + g|¥o(x)|*To(x) = 0

is solved with uniform solution \If() = \/ﬁ

0Ey

Mean field [ = 3—N — agn P = —QEO/BV — gn2/2
B EN Compressibility and 1 _ 8_77’ _ i
9 gmn  sound velocity me2 OP gn




Condensate In a box

Close to the boundary

Wo(x) = vnf(z/€)

1 d?

—§@f‘|‘f3—f=0




Nonlinearity I1s important

Uy = /ntanh(z/§)

Compare with ground state of free particle in a box: \Ifo (Z) ~ SIn 7rz/L

2.5 1 1 1

o Y(2)

ideal gas
Typical values o Sa /

/s \
.5 GP theory \ i
,

§~ 1lum < L~ 100pm™ 1f
,fﬁﬁrfl /},

healing length|:
N




Harmonic trap

! h

2 .2 :
V(X) — §mwhox typical length Oho =
MWho

2
Non interacting particles n(x) _ ‘\IJ(X)‘Z ~ exp (_337)

Thomas-Fermi approximation: assume the condensate changes on much larger
lengthscales




Local Density Approximation '

Uo(x) = /nrr(x)

p—U(x) = gnrr(x) >0 n(0) = n/g

Inverted parabola




Thomas — Fermi parameter

hwno [ 15Na\?/?
* N:/danF(X) (= “h ( a,)

2 Aho
15Na 1/5
a RTF — Uho
i N— > 1 Qho
Uho

U > Whe and Rrp > ape

£0)  al,
Ry R'ZI‘F

< 1 Local density approximation is valid




Thomas-Fermi density profile

Quantum pressure  — 5 VZ \/ﬁ ~

column density | i‘/nnn interact|{nc




Conclusions of Lecture 2

Order parameter has amplitude and phase and its dynamics is
governed by Gross — Pitaevskii Equation

Interactions enter through the scattering length of the potential

Phase plays important role and leads to unusual irrotational
hydrodynamics. In particular rigid rotation is forbidden

The typical scale on which order parameter change its value is
governed by healing length

If the external trap is sufficiently slow function of coordinates
one neglects quantum pressure term in GPE and uses Thomas-
Fermi approximation. Usually it works fine for large number of
particles
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