
  

Lecture 5: Phase coherence

Absence of long range order in low dimensions due to thermal and quantum  

fluctuations (of phase)

Power law decay of correlations in 2D and 1D

Josephson effect and phase coherence

Bose Hubbard Hamiltonian and Mott Insulator – Superfluid Transition

 

Previous lecture: Below superfluid temperature quantum liquids develop a superfluid 
                            component. Its motion is described by irrotational velocity field related
                            to phase 

This lecture



  

Example in low dimensions

Consider total number of particles below BEC transition

condensate
fluctuations

Bogoliubov theory predicts



  

Divergence at low momenta

Total number of particles diverges 

2D: at finite temperature

1D: even at

Long Range Order is destroyed by thermal (             ) or quantum fuctuations (           )



  

Absence of Long Range Order in 
Low Dimensions

It is possible to generalise the above  results beyond weakly interacting Bogoliubov
picture. It can be done with the help of theorems of quantum statistical mechanics
(Bogoliubov, Hohenberg-Mermin-Wagner)

Long Range Order is absent in 2D and 1D at finite temperatures due to thermal 

fluctuations of the order parameter

Quantum generalisation: 

Long Range Order is absent in 1D at zero temperature due to quantum 

fluctuations of the order parameter

These theorems apply to any type of Long Range Order (ferro, anti-ferromagnetic,
crystals etc.). In case of BEC the fluctuations are mainly fluctuatuations of the PHASE

Proofs  of these theorems use general uncertainty type relations of creation 
and annihilation operators to demonstrate divergence of             at 
in the presence of  condensate 



  

Time of flight experiment

Uniform expansion

Two condensates a distance d from each other:



  

Interference of condensates. 
Relative Phase

Initial state

Later

Interference

defines position of fringes



  

Phase fluctuations in 1D

Density – phase representation of fields

Fluctuations of the density                           decay fast (as            ) for large distances. 
We can put 

If the phase does not fluctuate the operator         can be replaced by c-number and 
we have BEC. 

In 1D this can be done only locally



  

Quasicondensates 

Assume the phase does not
fluctuate too much at short
scales. Then its fluctuations 
will only renormalise the condensate
density: 

One may then apply the Bogoliubov theory (density and phase representation)

*



  

One-body density matrix

We use the identity for exponentials of linear combinations in
creation/annihilation operators 

One body density matrix

Therefore we need to evaluate the phase fluctuations at distance 



  

Phase fluctuations

At zero temperature only terms containing                              survive and yield

Let us separate the integral 

converges for large 

*



  

Power law decay

If the  cutoff is chosen such that                              

the long range behaviour does not  depend on it

constant



  

Beyond weak coupling

The power law decay of one body density matrix  is due to phase fluctuations, i.e.
absence of the phase coherence in 1D. It is not restricted to  weak interactions and 
can always be written as

The parameter           is related to the compressibility (like sound velocity     )
of the liquid and is called Luttinger parameter (Efetov & Larkin 1976, Haldane 1981)

For strongly interacting bosons in 1D 

For weakly interacting bosons in 1D 



  

Momentum distribution

for small 

Diverges at                  in infinite system 

in finite system (trap)

can be measured using time of flight technique Paredes et al., 2004



  

Simple model of phase dynamics

Consider 2 condensates (a double well configuration).

Relative difference

+ tunneling term



  

Current of particles

Assuming the number of particles is large, consider the classical ansatz

Superfluid current (Josephson, 1962) 



  

Dynamics of the phase

This equation and equation for current can be derived from classical 
Hamiltonian 

Charging energy



  

Pendulum analogy

has two regimes: 

●vibrations, i.e. small oscillations around the origin with frequency

- phase difference         is well defined

●rotations for phase difference not well defined

self trapping or AC Josephson effect



  

AC Josephson effect

External force (gravity) 

For 
AC current



  

Experiments

M. Oberthaler group, 2004

Technion group, 2007



  

Re-quantisation of Josephson 
equations

In the “coordinate” representation 

coherence

strong tunneling

weak tunneling 



  

Weak coupling regime in number 
representation

in “number representation 

Random (delocalised) phase corresponds to well defined (relative) number of 
particles. This corresponds to so called Fock state

which corresponds to “fragmented condensate” discussed in Lecture 3. We see
that in the present case the condensate wave functions are well separated and not 
overlapping due to the smallness of tunneling 



  

Optical Lattices and Bose-Hubbard 
model

Generalise the Josephson model to many
wells forming a lattice 

The lattice potential is made of standing light 
wave

Tight-binding approximation

M.P.A. Fisher et al. 1989 



  

Deep insulator phase

Neglect tunneling

The Hamiltonian is a sum of independent terms on each lattice site. 

Eigenstates are just Fock states         with 
definite number of particles fixed by chemical 
potential 



  

Tunneling

Treat tunneling in the mean field approximation 

Order parameter (condensate) 

is found self-consistently

Note that           is calculated in the eigenstates of Hamiltonian which is
modified by tunneling  

coordination number



  

Self-consistency equation

Perturbation theory

mixes with states                                    only 

response function

*



  

Mott Insulator – Superfluid transition

The boundary of the transition with               

(Mott Insulator phase)

and                      (Superfluid phase)

are determined from the condition

Of course the prediction power of the mean
field approach is limited. 
Monte Carlo simulations give

in 3D
NB:              integer – always superfluid 



  

Experimental observation of MI-SF

The value of interaction parameter            is determined by scattering length

The value of tunneling           is controlled by optical lattice depth (laser intensity)

Greiner et al , 2002

SF MI SF

Momentum distribution
(time of flight)
measures coherence 



  

Conclusions of Lecture 5

● Relative phase between condensates can be measured in 
interference experiment

● Pure BEC: the phase doesn't fluctuate and results in well defined 
interference fringes

● In lower dimension phase fluctuations are large on long distance 
scales. They are responsible for power law decay of one body density 
matrix and absence of BEC (quasicondensates)

● Quantum dynamics of phase is crucial for understanding of 
Josephson model. Depending on tunneling we have 2 regimes: 
phase coherent and Fock states

● The same phase fluctuations are responsible for Mott Insulator – 
Superfluid transition in optical lattices (Bose-Hubbard)
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