Lectures 9 & 10

- Quantum phase transitions
 - Introduction
 - Quantum Ising model
- Quantum critical phenomena
 - Connection to classical criticality
- Exact solution of quantum Ising chain
 - Critical behaviour

Quantum statistical mechanics

basis of states s for each site: $|s\rangle_i$

basis for global state of *N* sites:

$$|\{s_i\}\rangle = |s_1, s_2, \dots s_N\rangle = \prod_{i=1}^{N} |s_i\rangle_i$$

general state of *N* sites:

$$|\Psi
angle = \sum_{\{s_i\}} \psi_{\{s_i\}} |\{s_i\}
angle$$

Hamiltonian \mathcal{H} (operator in N-site Hilbert space) with eigenstates:

$$\mathcal{H}|n\rangle = E_n|n\rangle$$

zero-T limit:

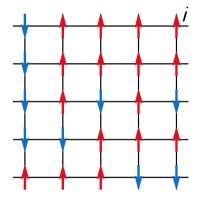
partition function $Z = \operatorname{Tr} e^{-\mathcal{H}/T} = \sum_n e^{-E_n/T} \quad (k_B = 1)$ free energy $F = \langle \mathcal{H} \rangle - TS = -T \log Z$

$$\langle Q \rangle = \langle g.s.|Q|g.s. \rangle \hspace{1cm} |g.s. \rangle \equiv |0 \rangle$$

$$F = \langle \mathcal{H} \rangle = E_{q.s.}$$
 $E_{g.s.} \equiv E_0$

e.g., spin- $\frac{1}{2}$ d.o.f.: basis states $|\uparrow\rangle_i$, $|\downarrow\rangle_i$ basis states correspond to classical configurations

e.g., spins
$$s_i = \begin{cases} +1 & \uparrow \\ -1 & \downarrow \end{cases}$$



Quantum Ising model

transverse-field quantum Ising model:

 $\langle ij \rangle$: nearest neighbours

$$\mathcal{H} = -J\sum_{\langle ij\rangle} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} - Jg\sum_{i} \hat{\sigma}_{i}^{x}$$

- each site *i* has spin- $\frac{1}{2}$ d.o.f.
- $\hat{\sigma}_{i}^{\mu}$: operators obeying $[\hat{\sigma}_{i}^{\mu}, \hat{\sigma}_{j}^{\nu}] = -2i\epsilon_{\mu\nu\rho}\hat{\sigma}_{i}^{\rho}\delta_{ij}$ $s, s' \in \{+1, -1\}$
- in $\hat{\sigma}^z$ basis, $|\uparrow\rangle_i$, $|\downarrow\rangle_i$, $\hat{\sigma}_i^{\mu}|s\rangle_i = (\sigma^{\mu})_{ss'}|s'\rangle_i$ σ^{μ} : Pauli matrix

$$\hat{\sigma}_{i}^{z}|\uparrow\rangle_{i} = +|\uparrow\rangle_{i} \qquad \hat{\sigma}_{i}^{z}|\downarrow\rangle_{i} = -|\downarrow\rangle_{i}$$

$$\hat{\sigma}_{i}^{x}|\uparrow\rangle_{i} = |\downarrow\rangle_{i} \qquad \hat{\sigma}_{i}^{x}|\downarrow\rangle_{i} = |\uparrow\rangle_{i}$$

Quantum Ising model has symmetry under spin-flip operator $U = \prod_i \hat{\sigma}_i^x$

i.e.,
$$[\mathcal{H}, U] = 0$$

$$\hat{\sigma}_{i}^{z} \xrightarrow{U} U \hat{\sigma}_{i}^{z} U^{-1} = -\hat{\sigma}_{i}^{z}$$

$$\hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} \xrightarrow{U} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z}$$

$$\hat{\sigma}_{i}^{x} \xrightarrow{U} \hat{\sigma}_{i}^{x}$$

Quantum paramagnet

$$\mathcal{H} = -J \sum_{\langle ij \rangle} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} - Jg \sum_{i} \hat{\sigma}_{i}^{x}$$

$$\hat{\sigma}_{i}^{x} |\uparrow\rangle_{i} = |\downarrow\rangle_{i}$$

$$\hat{\sigma}_{i}^{x} |\downarrow\rangle_{i} = |\uparrow\rangle_{i}$$

$$\hat{\sigma}_{i}^{x} |\downarrow\rangle_{i} = |\uparrow\rangle_{i}$$

$$\hat{\sigma}_{i}^{x} |\downarrow\rangle_{i} = |\uparrow\rangle_{i}$$
where $|\rightarrow\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle + |\downarrow\rangle)$

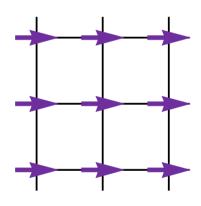
For
$$g \to +\infty$$
, $|g.s.\rangle = \prod_i | \to \rangle_i$

spins align with applied field: "quantum paramagnet"

g.s. is symmetric under spin flip: $U|g.s.\rangle = |g.s.\rangle$

$$\langle g.s.|\hat{\sigma}_i^z|g.s.\rangle = 0$$
 $U = \prod_i \hat{\sigma}_i^x$

product state, so no correlations: $\langle g.s.|\hat{\sigma}_i^z\hat{\sigma}_j^z|g.s.\rangle = \delta_{ij}$



For large finite
$$g$$
, $|g.s.\rangle = \prod_i |\to\rangle_i + \text{perturbative corrections in } 1/g$ correlations $\langle g.s. |\hat{\sigma}_i^z \hat{\sigma}_i^z | g.s. \rangle \sim e^{-|x_i - x_j|/\xi}$ with $\xi \to 0$ for $g \to \infty$

"kinetic energy (i.e., off-diagonal term) wins" ("kinetic" / "potential" depends on choice of basis)

Ferromagnetic phase

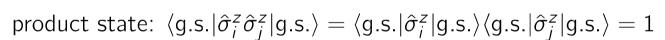
$$\mathcal{H} = -J\sum_{\langle ij\rangle} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} - Jg\sum_{i} \hat{\sigma}_{i}^{x}$$

For g=0, two degenerate ground states: $|\uparrow\rangle=\prod_i|\uparrow\rangle_i$ and $|\Downarrow\rangle=\prod_i|\downarrow\rangle_i$

spins align with each other: ferromagnet

both states break spin-flip symmetry $(U|\Uparrow\rangle = |\Downarrow\rangle)$

$$\langle g.s.|\hat{\sigma}_{i}^{z}|g.s.\rangle = 1$$



For $g=0^+$, superpositions $|\uparrow\rangle\pm|\Downarrow\rangle$ are e'states, but splitting $\to 0$ as $N\to\infty$

 $N=\infty$: macroscopic superpos'ns unstable; take $|\uparrow\uparrow\rangle$, $|\Downarrow\rangle$ as degenerate g.s.

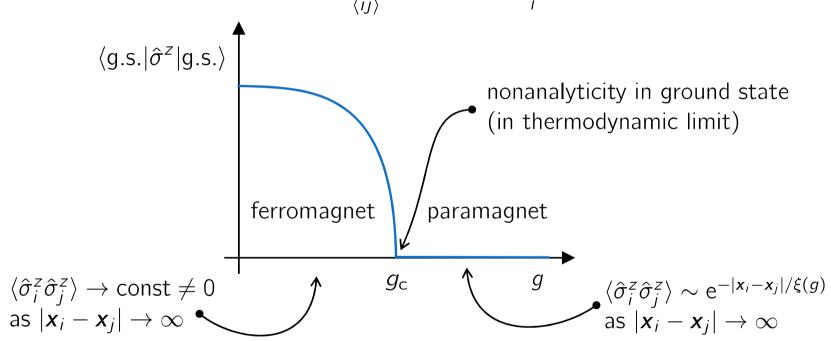
for small g and $N=\infty$, $|g.s._{+}\rangle=\prod_{i}|\uparrow\rangle_{i}+$ perturbative corrections in g $|g.s._{-}\rangle=\prod_{i}|\downarrow\rangle_{i}+$ perturbative corrections in g

"potential energy (i.e., diagonal term) wins"

Quantum phase transition

phase transition in ground state of quantum system

e.g.,
$$\mathcal{H} = -J\sum_{\langle ij\rangle}\hat{\sigma}_i^z\hat{\sigma}_j^z - Jg\sum_i\hat{\sigma}_i^x$$



continuous (second-order) phase transition:

$$\langle g.s.|\hat{\sigma}^z|g.s.\rangle \to 0$$
 continuously as $g \to g_c$
 $\xi(g) \to \infty$ as $g \to g_c$

Path integral for partition function

at temperature $T = 1/\beta$, partition function

$$Z = \operatorname{Tr} e^{-\beta \mathcal{H}}$$

$$= \sum_{\mathbf{s}} \langle \mathbf{s} | e^{-\beta \mathcal{H}} | \mathbf{s} \rangle$$
 for any (orthonormal) basis $\{ | \mathbf{s} \rangle \}$

split operator $e^{-\beta \mathcal{H}}$ into M pieces $e^{-a\mathcal{H}}$ with $Ma = \beta$:

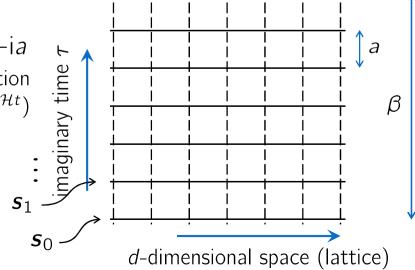
$$Z = \sum_{s_0} \langle s_0 | \underbrace{e^{-a\mathcal{H}} e^{-a\mathcal{H}} \cdots e^{-a\mathcal{H}}}_{M} | s_0 \rangle \qquad \sum_{s} |s\rangle \langle s| = 1$$

$$= \sum_{\boldsymbol{s}_0, \boldsymbol{s}_1, \dots, \boldsymbol{s}_{M-1}} \langle \boldsymbol{s}_0 | \mathrm{e}^{-a\mathcal{H}} | \boldsymbol{s}_1 \rangle \langle \boldsymbol{s}_1 | \mathrm{e}^{-a\mathcal{H}} | \boldsymbol{s}_2 \rangle \langle \boldsymbol{s}_2 | \dots | \boldsymbol{s}_{M-1} \rangle \langle \boldsymbol{s}_{M-1} | \mathrm{e}^{-a\mathcal{H}} | \boldsymbol{s}_0 \rangle$$

 $e^{-a\mathcal{H}}$: evolution by "imaginary time" t = -ia

(real-time evolution operator $e^{-i\mathcal{H}t}$)

 $\sum_{s_0,s_1,\dots,s_{M-1}}$: sum over trajectories "path integral" representation of Z



Quantum-classical mapping

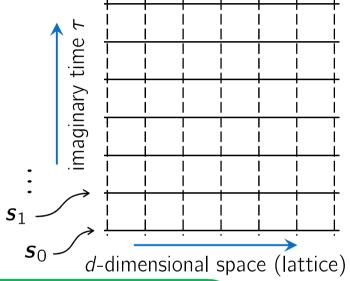
$$Z = \sum_{\mathbf{s}_0, \mathbf{s}_1, \dots, \mathbf{s}_{M-1}} \langle \mathbf{s}_0 | e^{-a\mathcal{H}} | \mathbf{s}_1 \rangle \langle \mathbf{s}_1 | e^{-a\mathcal{H}} | \mathbf{s}_2 \rangle \langle \mathbf{s}_2 | \dots | \mathbf{s}_{M-1} \rangle \langle \mathbf{s}_{M-1} | e^{-a\mathcal{H}} | \mathbf{s}_0 \rangle$$

choose basis states $|s\rangle$ corresponding to classical configurations s

define
$$\mathcal{E}(s, s') = -\log\langle s| \mathrm{e}^{-a\mathcal{H}}|s'\rangle = \left[\mathcal{E}(s', s)\right]^*$$

$$Z = \sum_{s_0, s_1, \dots, s_{M-1}} e^{-\sum_{i=0}^{M-1} \mathcal{E}(s_i, s_{i+1})}$$

where $s_M \equiv s_0$ (periodicity in au)



cf. classical statistical system with reduced Hamiltonian E_{cl} on (d+1)-dimensional lattice (with p.b.c.)

$$E_{cl} = \sum_{i} [E_1(\mathbf{s}_i) + E_2(\mathbf{s}_i, \mathbf{s}_{i+1})]$$
 E_1 : layer configuration energy E_2 : interaction between adjacent layers

$$= \sum_{i} \left\{ \frac{1}{2} \left[E_1(\boldsymbol{s}_i) + E_1(\boldsymbol{s}_{i+1}) \right] + E_2(\boldsymbol{s}_i, \boldsymbol{s}_{i+1}) \right\} = \sum_{i=0}^{M-1} E(\boldsymbol{s}_i, \boldsymbol{s}_{i+1})$$

if $\mathcal{E}(\boldsymbol{s},\boldsymbol{s}')$ is real, interpret Z as partition f'n for classical (d+1)-dimensional system

QC mapping: General case

quantum	classical		
imaginary time $ au$	extra spatial dimension $ au$	ne $ au$	
inverse temperature $eta=rac{1}{T}$	system size $L_ au$ in $ au$ direction	maginary time	
maginary-time evolution $e^{-a\mathcal{H}}$	Boltzmann weight (transfer matrix) $e^{-\mathcal{E}(s,s')} = \langle s e^{-a\mathcal{H}} s'\rangle$	imag	
sum over trajectories ("path integral")	sum over configurations (canonical ensemble)		d-dimensional space (lattice
quantum critical phenomena at $T=0$ in d dimensions	classical critical phenomena in $d+1$ dimensions		

- at zero temperature, $\beta = 1/T = \infty$: imaginary-time direction is infinite
- n.b., distinct from relationship between classical stochastic dynamics (in *d* dimensions) and quantum mechanics (in *d* dimensions)

QC mapping: Ising model

transverse-field quantum Ising model:
$$\mathcal{H} = -J\sum_{\langle ij\rangle}\hat{\sigma}_{i}^{z}\hat{\sigma}_{j}^{z} - Jg\sum_{i}\hat{\sigma}_{i}^{x}$$
define $\mathcal{E}(\boldsymbol{s},\boldsymbol{s}') = -\log\langle\boldsymbol{s}|\mathrm{e}^{-a\mathcal{H}}|\boldsymbol{s}'\rangle$ use $\hat{\sigma}_{i}^{z}$ basis, $|\uparrow\rangle_{i}$, $|\downarrow\rangle_{i}$:
$$Z = \sum_{\boldsymbol{s}_{0},\boldsymbol{s}_{1},\ldots,\boldsymbol{s}_{M-1}}\mathrm{e}^{-\sum_{i=0}^{M-1}\mathcal{E}(\boldsymbol{s}_{i},\boldsymbol{s}_{i+1})} \qquad |\boldsymbol{s}\rangle = |\{s_{1},s_{2},\ldots s_{N}\}\rangle = \prod_{i}^{N}|s_{i}\rangle_{i},$$

for sufficiently small
$$a$$
, use $e^{a(A+B)} = e^{aA}e^{aB}[1 + \mathcal{O}(a)]$

$$\langle \mathbf{s} | e^{-a\mathcal{H}} | \mathbf{s}' \rangle \approx \langle \mathbf{s} | e^{aJg\sum_{i} \hat{\sigma}_{i}^{x}} e^{aJ\sum_{\langle ij \rangle} \hat{\sigma}_{i}^{z}} \hat{\sigma}_{j}^{z}} | \mathbf{s}' \rangle$$

$$= \langle \mathbf{s} | e^{aJg\sum_{i} \hat{\sigma}_{i}^{x}} | \mathbf{s}' \rangle e^{aJ\sum_{\langle ij \rangle} s'_{i}s'_{j}} \qquad \langle \mathbf{s} | e^{\alpha \hat{\sigma}^{x}} | \mathbf{s}' \rangle = A(\alpha)e^{B(\alpha)ss'}$$

$$= e^{aJ\sum_{\langle ij \rangle} s'_{i}s'_{j}} \prod_{i} \langle s_{i} | e^{aJg\hat{\sigma}^{x}} | s'_{i} \rangle \qquad B(\alpha) = -\frac{1}{2} \log \tanh \alpha$$

$$= [A(aJg)]^{N} e^{aJ\sum_{\langle ij \rangle} s'_{i}s'_{j} + B(aJg)\sum_{i} s_{i}s'_{i}}$$

$$\mathcal{E}(\boldsymbol{s}, \boldsymbol{s}') = -aJ\sum_{\langle ij\rangle} s_i's_j' - B(aJg)\sum_i s_is_i' + \text{const}$$

QC mapping: Ising model

transverse-field quantum Ising model: $\mathcal{H} = -J\sum_{\langle ij\rangle}\hat{\sigma}_i^z\hat{\sigma}_j^z - Jg\sum_i\hat{\sigma}_i^x$

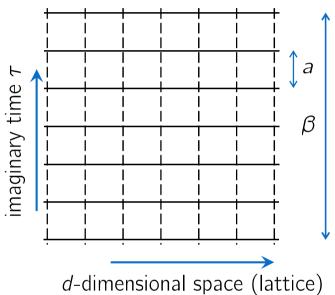
$$Z = \sum_{s_0, s_1, \dots, s_{M-1}} e^{-\sum_{i=0}^{M-1} \mathcal{E}(s_i, s_{i+1})}$$

For
$$a \rightarrow 0$$
,

$$B(lpha) = -rac{1}{2}\log anhlpha$$

$$\mathcal{E}(\boldsymbol{s},\boldsymbol{s}') = -aJ\sum_{\langle ij\rangle} s_i's_j' - B(aJg)\sum_i s_is_i'$$
 layer configuration energy

interaction between adjacent layers



- Transverse-field Ising model in d dimensions maps to highly anisotropic $(a \rightarrow 0)$ classical Ising model in d+1 dimensions
- ullet By universality, quantum Ising model has identical critical properties to isotropic classical Ising model in d+1 dimensions

Quantum Ising chain

transverse-field quantum Ising model in 1D:

$$\mathcal{H} = -J\sum_{i} \left[\hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z} + g \hat{\sigma}_{i}^{x} \right]$$

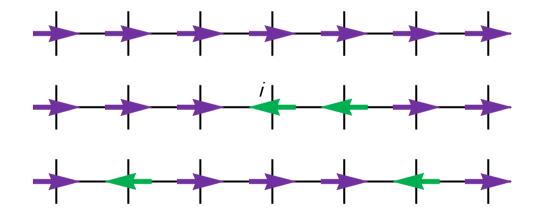
(related to 2D classical Ising model, so ordering transition at g_c)

for
$$g=\infty$$
, $|g.s.\rangle=\prod_i |\rightarrow\rangle_i$ excited states have flipped spins

for large g, use perturbation theory, with $\delta \mathcal{H} = \sum_{i} \hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z}$

 $\delta \mathcal{H}$ creates flipped spins in pairs & hops them between sites

$$|\rightarrow\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle + |\downarrow\rangle)$$
$$|\leftarrow\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle - |\downarrow\rangle)$$



$$\hat{\sigma}^{z}|\rightarrow\rangle = |\leftarrow\rangle$$

$$\hat{\sigma}^{z}|\leftarrow\rangle = |\rightarrow\rangle$$

so treat flipped spins as particles

Jordan-Wigner transformation

Treat flipped spins as particles either:

- as bosons—but then need interactions to forbid two flipped spins on one site
- $\hat{\sigma}_{i}^{x} = 1 2n_{i}$ $n_{i} = 0$ $\hat{\sigma}_{i}^{z} = b_{i} + b_{i}^{\dagger}$ $n_{i} = 1$
- as fermions—double occupation automatically forbidden, but fermion operators anticommute on different sites:

$$\{c_i, c_j^{\dagger}\} = \delta_{ij}$$

$$\{c_i, c_j\} = \{c_i^{\dagger}, c_j^{\dagger}\} = \delta_{ij}$$

$$[\hat{\sigma}_i^{\mu}, \hat{\sigma}_j^{\nu}] = -2i\epsilon_{\mu\nu\rho}\hat{\sigma}_i^{\rho}\delta_{ij}$$

Jordan-Wigner transformation (in 1D): add a string of minus signs

$$\hat{\sigma}_i^x = 1 - 2n_i \qquad n_j = c_j^{\dagger} c_j$$

$$\hat{\sigma}_i^z = -(c_i + c_i^{\dagger}) \prod_{j < i} (1 - 2n_j)$$

including this string, $[\hat{\sigma}_i^x, \hat{\sigma}_i^z] = 0$ for $i \neq j$, as required

Ising chain: Exact spectrum

transverse-field quantum Ising model in 1D:
$$\mathcal{H} = -J\sum_{i}\left[\hat{\sigma}_{i}^{z}\hat{\sigma}_{i+1}^{z} + g\hat{\sigma}_{i}^{x}\right]$$

JW transformation: $\hat{\sigma}_{i}^{x} = 1 - 2n_{i}$ $n_{j} = c_{j}^{\dagger}c_{j}$

$$\hat{\sigma}_{i}^{z} = -(c_{i} + c_{i}^{\dagger})\prod_{j < i}(1 - 2n_{j})$$

$$\hat{\sigma}_{i}^{z}\hat{\sigma}_{i+1}^{z} = (c_{i} + c_{i}^{\dagger})(c_{i+1} + c_{i+1}^{\dagger})\prod_{j < i}(1 - 2n_{j})\prod_{j' < i+1}(1 - 2n_{j'})$$

$$= (c_{i} + c_{i}^{\dagger})(c_{i+1} + c_{i+1}^{\dagger})(1 - 2n_{i}) \qquad \{c_{i}, c_{j}^{\dagger}\} = \delta_{ij}$$

$$= (-c_{i} + c_{i}^{\dagger})(c_{i+1} + c_{i+1}^{\dagger}) \qquad \{c_{i}, c_{j}\} = \{c_{i}^{\dagger}, c_{j}^{\dagger}\} = \delta_{ij}$$

result: quadratic Hamiltonian in terms of fermion operators

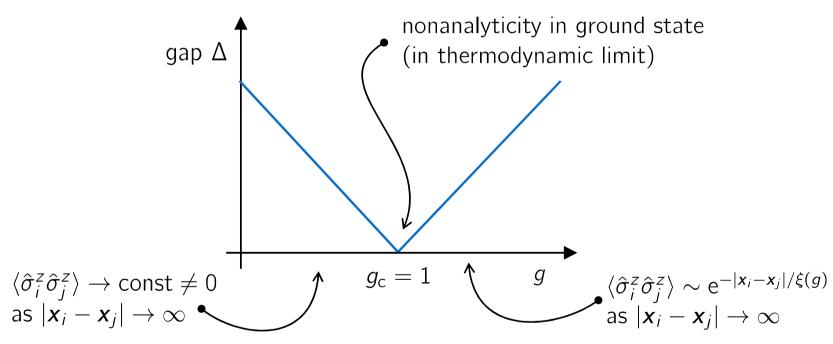
$$\mathcal{H} = -J\sum_{i} \left(c_{i}^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_{i} + c_{i}^{\dagger} c_{i+1}^{\dagger} + c_{i+1} c_{i} - 2g c_{i}^{\dagger} c_{i} + g \right)$$
 (see practice problems)

diagonalize with FT and unitary transformation: $c_k = u_k \gamma_k + \mathrm{i} v_k \gamma_{-k}^\dagger \quad \{\gamma_k, \gamma_k^\dagger\} = \delta_{k,k'}$

$$\mathcal{H} = \sum_{k} \varepsilon_{k} (\gamma_{k}^{\dagger} \gamma_{k} - \frac{1}{2})$$
 ground state $|g.s.\rangle$: $\gamma_{k} |g.s.\rangle = 0$ (all k)
$$\varepsilon_{k} = 2J\sqrt{1 + g^{2} - 2g\cos k}$$
 gap $\Delta = E_{1} - E_{g.s.} = \varepsilon_{0} = 2J|1 - g|$

Ising chain: Quantum phase transition

$$\mathcal{H} = -J\sum_{\langle ij\rangle} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} - Jg\sum_{i} \hat{\sigma}_{i}^{x} = \sum_{k} \varepsilon_{k} (\gamma_{k}^{\dagger} \gamma_{k} - \frac{1}{2})$$



$$\varepsilon_k = 2J\sqrt{1 + g^2 - 2g\cos k}$$

$$\Delta = 2J|1 - g| \sim |g - g_c|^{z\nu}$$
critical exponent $z\nu = 1$

Sachdev (1999/2011)