

Novel applications II: Magnetic nanostructures

Samir Lounis

July 10, 2013

Peter Grünberg Institut & Institute for Avdanced Simulation

World's smallest movie

World's smallest movie

Leinrich et al. IBM Almaden

$$H = -\frac{1}{2} \sum_{i \neq j} J_{ij} \vec{e}_i \cdot \vec{e}_j - \frac{1}{2} \sum_{i \neq j} D_{ij} \vec{e}_i \times \vec{e}_j - \sum_i K_i (\vec{e}_i \cdot \vec{e}_j^z)^2 - \dots$$
July 10, 2013

Folie 3

Manipulation of surface states

Crommie, Lutz, Eigler, Science (1993) July 10, 2013

Magnetic logic gates

Election de la chie Truccoline

Election vertication Trumpoling

Magnetism of single adatoms

Appetizer: Adatoms and small clusters Transition from atomic to monolayer & bulk behaviour

 $In^0(E_F) > 1$

Stoner model & Stoner criterion for ferromagnetism:

$$\partial M = \chi \partial B$$
$$\chi = \frac{1}{1 - In^0(E_F)} n^0(E_F)$$

CH

Lang, Stepanyuk, Wildberger, Zeller, Dederichs, Solid state Comm. (1994)

Folie 9

Transition from atomic to monolayer & bulk behaviour

Spin moments: 4d & 5d on Ag(001), shape & size dependence

Wildberger, Stepanyuk, Lang, Zeller, Dederichs, PRL (1995)

Nanowires & magnetic frustration

Non-collinear magnetism

Classical Heisenberg Hamiltonian:

$$H = -\frac{1}{2} \sum_{i \neq j} J_{ij} \vec{e}_i \cdot \vec{e}_j$$

Driving mechanism:

Competing interactions:

Ferromagnetism or antiferromagnetism

Mn or Cr atoms couple AF

Non-collinear magnetism: Mn on Ni(001)

 $H(ncol) = -2J_1 cos(\alpha) - J_2 cos(\theta)$

Folie 13

Odd numbered wires

odd = anti-parallel

Even-numbered wires: Frustration

even = non-collinear

Domino effect in nanowires

From youtube.com: look at Domino

Lounis, Dederichs, Blügel, Phys. Rev. Lett. **101**, 107204 (2008)

Experiment: Mn wires/Ni(110)

Holzberger, Schuh, Blügel, Lounis, Wulfhekel, PRL (2013)

Magnetic crystalline anisotropy energy (MAE)

XMCD measurements on MAE of Co adatoms/Pt(111)									
$H = -\frac{1}{2} \sum_{i \neq i} J_{ij} \vec{e}_i \cdot \vec{e}_j - \sum_i K_i \left(\vec{e}_i \cdot \vec{e}_j^z \right)^2$									
7	K =	H	H		l			A	1
i		11 _x	- 11 _{z.}					atom)	1
Α	n	S	L	$\Delta \mathbf{L}_{x-z}$	K _{x-z}	B		/ ⁸ π)	0
	1	2.14	0.60 (1.50)	- 0.25	+ 18.45	y		Ĩ	0
	2	2.11	0.38 (0.74)	- 0.11	+ 4.11		0 37 0 28		0
	3 chain	2.08	0.34 (0.67)	- 0.06	+ 3.69				0
	3 triangle	2.10	0.25 (0.43)	- 0.05	+ 2.22	0000			0
	4	2.08	0.22 (0.33)	- 0.01	+ 0.75	0.71	0.40	в	1
	5	2.08	0.27 (0.45)	- 0.09	+ 1.81	0.59	0.33		

Fig. 4. (A) Values of S, L, ΔL (μ_B), and K (meV) per Co atom calculated by the SPR-KKR method for Co particles on Pt(111) as shown in (B). The values of L in parentheses have been computed within the OP scheme with a 50% reduced Racah parameter. (B) Hard-sphere representation of the Co particles considered in the theoretical calculations. The labels indicate the OP values of L for nonequivalent Co sites. S, L, ΔL , and K in (A) are averaged over all Co sites.

July 10, 2013

Engineering of MAE of nanostructures

KKmertmertopearatorn)

0.5

-0.5

Blocking temperature is related to MAE

Ouazi, Vlaic, Rusponi, Moulas, Bulushek, Halleux, Bornemann, Mankovsky, Minar, Staunton, Ebert, Brune, Nature Communications, (2012)

2 3

0 1

56

4

n (Shell number)

7

Friedel oscillations & confinement

Friedel oscillations and confinement

Stone in water

3D jellium
$$\Delta n(r) \propto \frac{\cos(2k_F r)}{r^3}$$

2D jellium $\Delta n(r) \propto \frac{\cos(2k_F r)}{r^2}$

Atom at focal point; mirage at second focal point!

STM image: Co corral on Cu(111)

Significant role of surface state

Manoharan, Lutz, and Eigler, Nature (2000)

1-Self-consistent calculations

Related ab-initio calculations:

Lazarovits, Ujfalussy, Szunyogh, Gyorffy, Weinberger, J.Phys. Cond. Matt. (2005) Side view

Vac

Fe

Atom at focal point; mirage at second focal point!

STM image: Co corral on Cu(111)

Significant role of surface state

g h

Manoharan, Lutz, and Eigler, Nature (2000)

Related ab-initio calculations:

2-Use of potential of single Fe atoms

Lazarovits, Ujfalussy, Szunyogh, Gyorffy, Weinberger, J.Phys. Cond. Matt. (2005)

Atom at focal point; mirage at second focal point!

STM image: Co corral on Cu(111)

Significant role of surface state

Manoharan, Lutz, and Eigler, Nature (2000)

Related ab-initio calculations:

3-Solve the Dyson eq. for corral + vacuum sites

Lazarovits, Ujfalussy, Szunyogh, Gyorffy, Weinberger, J.Phys. Cond. Matt. (2005)

Side view

Vac

Fe

top view

-olie 26

Atom at focal point; mirage at second focal point!

Manoharan, Lutz, and Eigler, Nature (2000)

Related ab-initio calculations:

3-Solve the Dyson eq. for corral + vacuum sites

Lazarovits, Ujfalussy, Szunyogh, Gyorffy, Weinberger, J.Phys. Cond. Matt. (2005)

Atom at focal point; mirage at second focal point!

STM image: Co corral on Cu(111)

Significant role of surface state

h

Manoharan, Lutz, and Eigler, Nature (2000)

Related ab-initio calculations:

Circular quantum well model $V(\vec{r}) = \begin{array}{c} 0 & \text{if } r < R \\ +\infty & \text{if } r \ge R \end{array}$

Solutions are bessel functions of the first kind

Lazarovits, Ujfalussy, Szunyogh, Gyorffy, Weinberger, J.Phys. Cond. Matt. (2005)

h

Atom at focal point; mirage at second focal point!

STM image: Co corral on Cu(111)

Significant role of surface state

Manoharan, Lutz, and Eigler, Nature (2000)

Related *ab-initio* calculations:

Stepanyuk, Niebergall, Hergert, Bruno, PRL (2005)

Folie 28

Electron distribution induced by adatoms or buried atoms

Silly et al., PRL 92, 16101 (2004)

STM picture by A. Weismann, M. Wenderoth, R.G. Ulbrich University of Göttingen

Method

Method

Method

Tersoff-Hamann
Model:
$$I(\vec{r}_{\parallel}, z, V) \propto n_T \int_{E_F}^{E_F + eV} n(\vec{r}_{\parallel}, z, \epsilon) d\epsilon$$

$$\Delta G_{vac} = G^0_{vac-imp} V_{imp} G^0_{imp-vac}$$

Result: Constant Current STM-image Co buried below Cu(111) surface

- Charge density in vacuum (~6.1Å above the surface)
- Bias Voltage V: 100 meV below E_F
- Co at 6th layer below the surface (~12.1Å)

STM

Real space visualisation of Fermi surfaces with STM!

below

Cu(001)surface

Origin of effect

Magnetic Friedel oscillations & RKKY interac. JÜLICH

K. Yosida, Phys. Rev. (1957)

RKKY Interaction in Fe Pairs on Cu(111)

Khajetoorians, Wiebe, Chilian, Lounis, Blügel, and Wiesendanger, Nature Physics (2012)

Manufacturing and investigating antiferromagnetic nano-objects

Odd and Even Antiferromagnetic Chains

odd \rightarrow one uncompensated moment even \rightarrow compensated moment

Here: $J_2 = B$ and MAE K >> J_1 and $B \rightarrow Ising-like$ system

🚺 Khajetoorians, Wiebe, Chilian, Lounis, Blügel, and Wiesendanger, Nature Physics (2012) 💚

Overview of recent novel applications of the KKR method

One atom more or less matters!

Impact on magnetism, frustration, electronic confinement, interactions

KKR = elegant tool to investigate nanostructures