KKR and Green Functions

> Julie Staunton
> Physics Department, University of Warwick

Electron Density Functional Theory

$$
\begin{aligned}
& \text { - } \hat{H}=\frac{\hbar^{2}}{2 m} \int \nabla \psi^{\dagger}(\mathbf{r}) \nabla \psi(\mathbf{r}) d \mathbf{r}+\frac{e^{2}}{2} \iint \frac{\psi^{\dagger}(\mathbf{r}) \psi^{\dagger}\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \psi(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime} d \mathbf{r}+ \\
& \int V^{\operatorname{ext}}(\mathbf{r}) \psi^{\dagger}(\mathbf{r}) \psi(\mathbf{r}) d \mathbf{r}
\end{aligned}
$$

Electron Density Functional Theory

- $\hat{H}=\frac{\hbar^{2}}{2 m} \int \nabla \psi^{\dagger}(\mathbf{r}) \nabla \psi(\mathbf{r}) d \mathbf{r}+\frac{e^{2}}{2} \iint \frac{\psi^{\dagger}(\mathbf{r}) \psi^{\dagger}\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \psi(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime} d \mathbf{r}+$ $\int V^{e x t}(\mathbf{r}) \psi^{\dagger}(\mathbf{r}) \psi(\mathbf{r}) d \mathbf{r}$
- i.e. $\hat{H}=K . E .+V_{e-e}+V^{e x t}, \psi^{\dagger}(\mathbf{r})$ and $\psi(\mathbf{r})$ are electronic creation and annihilation operators.
- $E_{\text {Vext }}[n]=<\psi|\hat{H}| \Psi>, n(\mathbf{r})=<\psi\left|\psi^{\dagger}(\mathbf{r}) \psi(\mathbf{r})\right| \Psi>$. Minimum gives ground state energy.

Electron Density Functional Theory

- $\hat{H}=\frac{\hbar^{2}}{2 m} \int \nabla \psi^{\dagger}(\mathbf{r}) \nabla \psi(\mathbf{r}) d \mathbf{r}+\frac{e^{2}}{2} \iint \frac{\psi^{\dagger}(\mathbf{r}) \psi^{\dagger}\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \psi(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime} d \mathbf{r}+$ $\int V^{e x t}(\mathbf{r}) \psi^{\dagger}(\mathbf{r}) \psi(\mathbf{r}) d \mathbf{r}$
- i.e. $\hat{H}=K . E .+V_{e-e}+V^{e x t}, \psi^{\dagger}(\mathbf{r})$ and $\psi(\mathbf{r})$ are electronic creation and annihilation operators.
- $E_{V \text { ext }}[n]=\langle\psi| \hat{H}|\Psi>, n(\mathbf{r})=<\psi| \psi^{\dagger}(\mathbf{r}) \psi(\mathbf{r}) \mid \psi>$. Minimum gives ground state energy.
- $\frac{\delta E_{\text {vert }}}{\delta n(r)}=0$ implies $\left(\frac{-\hbar^{2} \nabla^{2}}{2 m}+v^{\text {eff }}(\mathbf{r} ;[n])\right) \phi_{i}(\mathbf{r})=\varepsilon_{i} \phi_{i}(\mathbf{r})$. Single electron Schrodinger equation with $n(\mathbf{r})=\sum_{i}^{o c c .} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r})$.
- $\hat{H}=\frac{\hbar^{2}}{2 m} \int \nabla \psi^{\dagger}(\mathbf{r}) \nabla \psi(\mathbf{r}) d \mathbf{r}+\frac{e^{2}}{2} \iint \frac{\psi^{\dagger}(\mathbf{r}) \psi^{\dagger}\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \psi(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime} d \mathbf{r}+$ $\int V^{\text {ext }}(\mathbf{r}) \psi^{\dagger}(\mathbf{r}) \psi(\mathbf{r}) d \mathbf{r}$
- i.e. $\hat{H}=K . E .+V_{e-e}+V^{e x t}, \psi^{\dagger}(\mathbf{r})$ and $\psi(\mathbf{r})$ are electronic creation and annihilation operators.
- $E_{V_{\text {ext }}}[n]=<\psi|\hat{H}| \Psi>, n(\mathbf{r})=<\psi\left|\psi^{\dagger}(\mathbf{r}) \psi(\mathbf{r})\right| \psi>$.

Minimum gives ground state energy.

- $\frac{\delta E_{\text {vext }}}{\delta n(\mathbf{r})}=0$ implies $\left(\frac{-\hbar^{2} \nabla^{2}}{2 m}+v^{\text {eff }}(\mathbf{r} ;[n])\right) \phi_{i}(\mathbf{r})=\varepsilon_{i} \phi_{i}(\mathbf{r})$. Single electron Schrodinger equation with $n(\mathbf{r})=\sum_{i}^{o c c} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r})$.
- Single electron Green function $G\left(\mathbf{r}, \mathbf{r}^{\prime} ; \varepsilon\right)=\sum_{i} \frac{\phi_{i}\left(\mathbf{r} \phi_{i}^{*}\left(\mathbf{r}^{\prime}\right)\right.}{\left(\varepsilon-\varepsilon_{i}\right)}$.
- $\left(\varepsilon-H_{K S}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime} ; \varepsilon\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$

Potentials and Scattering

- Effective Kohn-Sham DFT potentials in a solid, nuclear Coulombic and electronic screening contribution.

Potentials and Scattering

- Effective Kohn-Sham DFT potentials in a solid, nuclear Coulombic and electronic screening contribution.

- Muffin-tin approximation

WARWICK

Single site scattering

- Spherical symmetry $\left(-\nabla^{2}+v(r)\right) \psi(\mathbf{r})=E \psi(\mathbf{r}) \quad\left(\frac{\hbar^{2}}{2 m}=1\right.$, a.u. $)$
- $\psi(\mathbf{r})=\sum_{L} a_{L}(E) R_{l}(E, r) Y_{L}(\hat{r})$ where $R_{l}(E, r)$ is the solution of the radial Schrödinger equation $\left[-\frac{1}{r} \frac{d^{2}}{d r^{2}} r+\frac{I(l+1)}{r^{2}}+v(r)\right] R_{l}(E, r)=E R_{l}(E, r)$ and $Y_{L}(\hat{r})$ is a spherical harmonic.

Single site scattering

- Spherical symmetry $\left(-\nabla^{2}+v(r)\right) \psi(\mathbf{r})=E \psi(\mathbf{r}) \quad\left(\frac{\hbar^{2}}{2 m}=1\right.$, a.u. $)$
- $\psi(\mathbf{r})=\sum_{L} a_{L}(E) R_{l}(E, r) Y_{L}(\hat{r})$ where $R_{l}(E, r)$ is the solution of the radial Schrödinger equation
$\left[-\frac{1}{r} \frac{d^{2}}{d r^{2}} r+\frac{l(l+1)}{r^{2}}+v(r)\right] R_{l}(E, r)=E R_{l}(E, r)$ and $Y_{L}(\hat{r})$ is a spherical harmonic.
- For $r \rightarrow \infty, R_{l}(E, r)=\frac{1}{\sqrt{E} r} \sin \left[\sqrt{E} r-\frac{l \pi}{2}+\delta_{l}(E)\right]$ where $\delta_{l}(E)$ is a scattering phase shift.

Figure 4.2: Phase shifts of electron states in Ce , obtained from LDA calculation.

Single site scattering

- Spherical symmetry $\left(-\nabla^{2}+v(r)\right) \psi(\mathbf{r})=E \psi(\mathbf{r}) \quad\left(\frac{\hbar^{2}}{2 m}=1\right.$, a.u. $)$
- $\psi(\mathbf{r})=\sum_{L} a_{L}(E) R_{l}(E, r) Y_{L}(\hat{r})$ where $R_{l}(E, r)$ is the solution of the radial Schrödinger equation
$\left[-\frac{1}{r} \frac{d^{2}}{d r^{2}} r+\frac{l(l+1)}{r^{2}}+v(r)\right] R_{l}(E, r)=E R_{l}(E, r)$ and $Y_{L}(\hat{r})$ is a spherical harmonic.
- For $r \rightarrow \infty, R_{l}(E, r)=\frac{1}{\sqrt{E} r} \sin \left[\sqrt{E} r-\frac{l \pi}{2}+\delta_{l}(E)\right]$ where $\delta_{l}(E)$ is a scattering phase shift.

Figure 4.2: Phase shifts of electron states in Ce , obtained from LDA calculation.

- Localised electronic states are characterised by phase shifts with very sharp resonances, whereas band-like states have more slowly varying phase shifts.

Green Functions

$$
\text { - } G(E)=\lim _{\epsilon \rightarrow 0}(E+i \epsilon-H)^{-1}, \cdots G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=\sum_{i} \frac{\phi_{i}(\mathbf{r}) \phi_{i}^{*}\left(\mathbf{r}^{\prime}\right)}{E-\epsilon_{i}}
$$

Green Functions

- $G(E)=\lim _{\epsilon \rightarrow 0}(E+i \epsilon-H)^{-1}, \cdots G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=\sum_{i} \frac{\phi_{i}(\mathbf{r}) \phi_{i}^{*}\left(\mathbf{r}^{\prime}\right)}{E-\epsilon_{i}}$.
- Dyson equation: $G=G_{0}+G_{0} v G$
$G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) v\left(\mathbf{r}^{\prime \prime}\right) G\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}, E\right)$ $G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)$ is free particle Green's function, $\left(H_{0}=-\nabla^{2}\right)$.

Green Functions

- $G(E)=\lim _{\epsilon \rightarrow 0}(E+i \epsilon-H)^{-1}, \cdots G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=\sum_{i} \frac{\phi_{i}(\mathbf{r}) \phi_{i}^{*}\left(\mathbf{r}^{\prime}\right)}{E-\epsilon_{i}}$.
- Dyson equation: $G=G_{0}+G_{0} v G$
$G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) v\left(\mathbf{r}^{\prime \prime}\right) G\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}, E\right)$
$G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)$ is free particle Green's function, $\left(H_{0}=-\nabla^{2}\right)$.
- Introduce t-matrix: $G=G_{0}+G_{0} t G_{0}, t=v+v G_{0} t$
$G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} \int d \mathbf{r}^{\prime \prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) t\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime \prime \prime}, E\right) G_{0}\left(\mathbf{r}^{\prime \prime \prime}, \mathbf{r}^{\prime}, E\right)$
$t\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=v(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\int d \mathbf{r}^{\prime \prime} v(\mathbf{r}) G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) t\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}, E\right)$
i.e. perturbation expansion.

Green Functions

- $G(E)=\lim _{\epsilon \rightarrow 0}(E+i \epsilon-H)^{-1}, \cdots G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=\sum_{i} \frac{\phi_{i}(\mathbf{r}) \phi_{i}^{*}\left(\mathbf{r}^{\prime}\right)}{E-\epsilon_{i}}$.
- Dyson equation: $G=G_{0}+G_{0} v G$
$G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) v\left(\mathbf{r}^{\prime \prime}\right) G\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}, E\right)$
$G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)$ is free particle Green's function, $\left(H_{0}=-\nabla^{2}\right)$.
- Introduce t-matrix: $G=G_{0}+G_{0} t G_{0}, t=v+v G_{0} t$
$G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} \int d \mathbf{r}^{\prime \prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) t\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime \prime \prime}, E\right) G_{0}\left(\mathbf{r}^{\prime \prime \prime}, \mathbf{r}^{\prime}, E\right)$
$t\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=v(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\int d \mathbf{r}^{\prime \prime} v(\mathbf{r}) G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) t\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}, E\right)$
i.e. perturbation expansion.
- Plane wave representation, on the energy shell $\left(k^{2}=k^{\prime 2}=E\right)$, angular momentum components $t_{L, L^{\prime}}=\int d \mathbf{r} \int d \mathbf{r}^{\prime} j_{l}(\sqrt{E} r) Y_{L}^{*}\left(\hat{\mathbf{r}^{\prime}}\right) t\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right) Y_{L^{\prime}}\left(\hat{\mathbf{r}}^{\prime}\right) j_{\prime^{\prime}}(\sqrt{E} r)$.

Green Functions

- $G(E)=\lim _{\epsilon \rightarrow 0}(E+i \epsilon-H)^{-1}, \cdots G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=\sum_{i} \frac{\phi_{i}(\mathbf{r}) \phi_{i}^{*}\left(\mathbf{r}^{\prime}\right)}{E-\epsilon_{i}}$.
- Dyson equation: $G=G_{0}+G_{0} v G$
$G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) v\left(\mathbf{r}^{\prime \prime}\right) G\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}, E\right)$
$G_{0}\left(r, r^{\prime}, E\right)$ is free particle Green's function, $\left(H_{0}=-\nabla^{2}\right)$.
- Introduce t-matrix: $G=G_{0}+G_{0} t G_{0}, t=v+v G_{0} t$
$G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} \int d \mathbf{r}^{\prime \prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) t\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime \prime \prime}, E\right) G_{0}\left(\mathbf{r}^{\prime \prime \prime}, \mathbf{r}^{\prime}, E\right)$
$t\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=v(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\int d \mathbf{r}^{\prime \prime} v(\mathbf{r}) G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) t\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}, E\right)$
i.e. perturbation expansion.
- Plane wave representation, on the energy shell
$\left(k^{2}=k^{\prime 2}=E\right)$, angular momentum components
$t_{L, L^{\prime}}=\int d \mathbf{r} \int d \mathbf{r}^{\prime} j /(\sqrt{E} r) Y_{L}^{*}\left(\hat{\mathbf{r}^{\prime}}\right) t\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right) Y_{L^{\prime}}\left(\hat{\mathbf{r}}^{\prime}\right) j \mu^{\prime}(\sqrt{E} r)$.
- Spherical symmetric potential, $t_{L, L^{\prime}}=t_{L} \delta_{L, L^{\prime}}=-\frac{1}{\sqrt{E}} \sin \delta_{1} e^{i \delta_{l}}$, phase shifts again. $t \leftrightarrow \delta_{/}$.

Multiple Scattering

- $v(\mathbf{r})$ is replaced by $V(\mathbf{r})=\sum_{i} v_{i}\left(\mathbf{r}-\mathbf{R}_{\mathbf{i}}\right)$.

Multiple Scattering

- $v(\mathbf{r})$ is replaced by $V(\mathbf{r})=\sum_{i} v_{i}\left(\mathbf{r}-\mathbf{R}_{\mathbf{i}}\right)$.
- $G=G_{0}+G_{0} T G_{0}$
$G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} \int d \mathbf{r}^{\prime \prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) T\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime \prime \prime}, E\right) G_{0}\left(\mathbf{r}^{\prime \prime \prime}, \mathbf{r}^{\prime}, E\right)$.

Multiple Scattering

- $v(\mathbf{r})$ is replaced by $V(\mathbf{r})=\sum_{i} v_{i}\left(\mathbf{r}-\mathbf{R}_{\mathbf{i}}\right)$.
- $G=G_{0}+G_{0} T G_{0}$

$$
G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} \int d \mathbf{r}^{\prime \prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) T\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime \prime \prime}, E\right) G_{0}\left(\mathbf{r}^{\prime \prime \prime}, \mathbf{r}^{\prime}, E\right) .
$$

- G_{0} is the free-particle Green's function

$$
G_{0}\left(\mathbf{r}, r^{\prime}, E\right)=\sum_{L L^{\prime}} i^{\prime} j\left(\sqrt{E}\left|r-R_{i}\right| Y_{L}\left(\widehat{r-R_{i}}\right) G_{0, L^{\prime}}\left(\mathbf{R}_{i}-\mathbf{R}_{j}, E\right) Y_{L^{\prime}}^{*}\left(\overrightarrow{r^{\prime}-R_{j}}\right) j_{j}\left(\sqrt{E}\left|r^{\prime}-R_{j}\right|\right)(-i)^{\prime}\right.
$$

Multiple Scattering

- $v(\mathbf{r})$ is replaced by $V(\mathbf{r})=\sum_{i} v_{i}\left(\mathbf{r}-\mathbf{R}_{\mathbf{i}}\right)$.
- $G=G_{0}+G_{0} T G_{0}$ $G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} \int d \mathbf{r}^{\prime \prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) T\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime \prime \prime}, E\right) G_{0}\left(\mathbf{r}^{\prime \prime \prime}, \mathbf{r}^{\prime}, E\right)$.
- G_{0} is the free-particle Green's function

$$
G_{0}\left(\mathbf{r}, r^{\prime}, E\right)=\sum_{L L^{\prime}} i^{\prime} j\left(\sqrt{E}\left|r-R_{i}\right| Y_{L}\left(\widehat{r-R_{i}}\right) G_{0, L^{\prime}}\left(\mathbf{R}_{i}-\mathbf{R}_{j}, E\right) Y_{L^{\prime}}^{*}\left(\overrightarrow{r^{\prime}-R_{j}}\right)_{j^{\prime}}\left(\sqrt{E}\left|r^{\prime}-\mathbf{R}_{j}\right|\right)(-i)^{\prime}\right.
$$

- $G_{0, L L^{\prime}}$ are so-called structure constants, which depend only where the scatterers are located $\mathbf{R}_{1}, \mathbf{R}_{2}, \cdots$.
$G_{0, L^{\prime}}\left(\mathbf{R}_{i}-\mathbf{R}_{j}, E\right)=-4 \pi i \sqrt{E} \sum_{L^{\prime \prime}} i^{\prime \prime \prime} C_{L L^{\prime}}^{L^{\prime \prime}} h_{\prime^{\prime \prime}}^{+}\left(\sqrt{E}\left|\mathbf{R}_{i}-\mathbf{R}_{j}\right|\right) Y_{L^{\prime \prime}}\left(\widehat{\mathbf{R}_{i}-\mathbf{R}_{j}}\right)$ with Gaunt numbers $C_{L L^{\prime}}^{L^{\prime \prime}}=\int d \Omega Y_{L}^{*}(\Omega) Y_{L^{\prime}}(\Omega) Y_{L^{\prime \prime}}(\Omega)$.

Multiple Scattering

- $v(\mathbf{r})$ is replaced by $V(\mathbf{r})=\sum_{i} v_{i}\left(\mathbf{r}-\mathbf{R}_{\mathbf{i}}\right)$.
- $G=G_{0}+G_{0} T G_{0}$ $G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)+\int d \mathbf{r}^{\prime \prime} \int d \mathbf{r}^{\prime \prime \prime} G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}, E\right) T\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime \prime \prime}, E\right) G_{0}\left(\mathbf{r}^{\prime \prime \prime}, \mathbf{r}^{\prime}, E\right)$.
- G_{0} is the free-particle Green's function $G_{0}\left(\mathbf{r}, r^{\prime}, E\right)=\sum_{L L^{\prime}} i^{\prime} j\left(\sqrt{E}\left|r-R_{i}\right| Y_{L}\left(\widehat{r-R_{i}}\right) G_{0, L^{\prime}}\left(\mathbf{R}_{i}-R_{j}, E\right) Y_{L^{\prime}}^{*}\left(\overrightarrow{r^{\prime}-R_{j}}\right)_{j},\left(\sqrt{E}\left|r^{\prime}-R_{j}\right|\right)(-i)^{\prime}\right.$
- $G_{0, L L^{\prime}}$ are so-called structure constants, which depend only where the scatterers are located $\mathbf{R}_{1}, \mathbf{R}_{2}, \cdots$.
$G_{0, L^{\prime}}\left(\mathbf{R}_{i}-\mathbf{R}_{j}, E\right)=-4 \pi i \sqrt{E} \sum_{L^{\prime \prime}} i^{\prime \prime \prime} C_{L L^{\prime}}^{L^{\prime \prime}} h_{\prime^{\prime \prime}}^{+}\left(\sqrt{E}\left|\mathbf{R}_{i}-\mathbf{R}_{j}\right|\right) Y_{L^{\prime \prime}}\left(\widehat{\mathbf{R}_{i}-\mathbf{R}_{j}}\right)$ with Gaunt numbers $C_{L L^{\prime}}^{L^{\prime \prime}}=\int d \Omega Y_{L^{*}}^{*}(\Omega) Y_{L^{\prime}}(\Omega) Y_{L^{\prime \prime}}(\Omega)$.
- T is the scattering T -matrix for the potential array, $T=V+V G_{0} T$.

Multiple Scattering - scattering path operator

- $T=\sum_{i, j} \tau^{i j}$ so that $\tau^{i j}$ gives the outgoing wave from the i site if there is an incoming wave on j

$$
\tau^{i j}=t_{i} \delta_{i j}+\sum_{k \neq i} t_{i} G_{0}^{i, k} \tau^{k j}
$$

- Plane wave, on the energy shell, angular momentum representation

$$
\tau_{L, L^{\prime}}^{i j}(E)=t_{i, L}(E) \delta_{i j} \delta_{L L^{\prime}}+\sum_{k \neq i} \sum_{L^{\prime \prime}} t_{i, L}(E) G_{0, L L^{\prime}}\left(\mathbf{R}_{i}-\mathbf{R}_{k}, E\right) \tau_{L^{\prime \prime}, L^{\prime}}^{k j}(E)
$$

Multiple Scattering - scattering path operator

- $T=\sum_{i, j} \tau^{i j}$ so that $\tau^{i j}$ gives the outgoing wave from the i site if there is an incoming wave on j

$$
\tau^{i j}=t_{i} \delta_{i j}+\sum_{k \neq i} t_{i} G_{0}^{i, k} \tau^{k j}
$$

- Plane wave, on the energy shell, angular momentum representation

$$
\tau_{L, L^{\prime}}^{i j}(E)=t_{i, L}(E) \delta_{i j} \delta_{L L^{\prime}}+\sum_{k \neq i} \sum_{L^{\prime \prime}} t_{i, L}(E) G_{0, L^{\prime}}\left(\mathbf{R}_{i}-\mathbf{R}_{k}, E\right) \tau_{L^{\prime \prime}, L^{\prime}}^{k j}(E)
$$

- If the array of potentials forms a periodic lattice, a Lattice Fourier transform produces
$\tau_{L, L^{\prime}}(\mathbf{k}, E)=\left[\underline{t}^{-1}(E)-\underline{G_{0}}(\mathbf{k}, E)\right]^{-1}$ and $\left\|t_{L}^{-1}(E) \delta_{L L^{\prime}}-G_{0, L L^{\prime}}(\mathbf{k}, E)\right\|=0$
is the KKR secular equation for the band structure of the system.

Calculating properties from the KKR

- Green function for DFT, spectra, response functions etc. $G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=\sum_{L L^{\prime}} Z_{L}^{i}\left(\mathbf{r}_{i}, E\right) \tau_{L_{, L^{\prime}}}^{i j}(E) Z_{L^{\prime}}^{j}\left(\mathbf{r}_{j}^{\prime}, E\right)-\delta_{i j} \sum_{L} Z_{L}^{i}\left(\mathbf{r}_{<}, E\right) J_{L^{\prime}}^{i}(\mathbf{r}>, E)$ where Z_{L}^{n} and J_{L}^{n} are respectively the regular and irregular solutions to the Schrödinger equation for a single site potential $v_{n} . \quad\left(r=r_{i}+R_{i}, r^{\prime}=r_{j}^{\prime}+R_{j}\right)$.

Calculating properties from the KKR

- Green function for DFT, spectra, response functions etc. $G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=\sum_{L L^{\prime}} Z_{L}^{i}\left(\mathbf{r}_{i}, E\right) \tau_{L, L^{\prime}}^{i j}(E) Z_{L^{\prime}}^{j}\left(\mathbf{r}_{j}^{\prime}, E\right)-\delta_{i j} \sum_{L} Z_{L}^{i}\left(\mathbf{r}_{<}, E\right) J_{L^{\prime}}^{i}\left(\mathbf{r}_{>}, E\right)$ where Z_{L}^{n} and J_{L}^{n} are respectively the regular and irregular solutions to the Schrödinger equation for a single site potential v_{n}. $\quad\left(r=r_{i}+R_{i}, r^{\prime}=r_{j}^{\prime}+R_{j}\right)$.
- Density for DFT: $n(\mathbf{r})=-\frac{1}{\pi} \int_{E_{B}}^{E_{F}} d E \operatorname{Im} G(\mathbf{r}, \mathbf{r}, E)$

Calculating properties from the KKR

- Green function for DFT, spectra, response functions etc. $G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=\sum_{L L^{\prime}} Z_{L}^{i}\left(\mathbf{r}_{i}, E\right) \tau_{L, L^{\prime}}^{i j}(E) Z_{L^{\prime}}^{j}\left(\mathbf{r}_{j}^{\prime}, E\right)-\delta_{i j} \sum_{L} Z_{L}^{i}\left(\mathbf{r}_{<}, E\right) J_{L^{\prime}}^{i}\left(\mathbf{r}_{>}, E\right)$ where Z_{L}^{n} and J_{L}^{n} are respectively the regular and irregular solutions to the Schrödinger equation for a single site potential v_{n}. $\quad\left(r=r_{i}+R_{i}, r^{\prime}=r_{j}^{\prime}+R_{j}\right)$.
- Density for DFT: $\quad n(\mathbf{r})=-\frac{1}{\pi} \int_{E_{B}}^{E_{F}} d E \operatorname{Im} G(\mathbf{r}, \mathbf{r}, E)$
- Electronic structure:
- Density of states: $n(E)=-\frac{1}{\pi} \int d \mathbf{r} \operatorname{Im} G(\mathbf{r}, \mathbf{r}, E)$

Calculating properties from the KKR

- Green function for DFT, spectra, response functions etc. $G\left(\mathbf{r}, \mathbf{r}^{\prime}, E\right)=\sum_{L L^{\prime}} Z_{L}^{i}\left(\mathbf{r}_{i}, E\right) \tau_{L, L^{\prime}}^{i j}(E) Z_{L^{\prime}}^{j}\left(\mathbf{r}_{j}^{\prime}, E\right)-\delta_{i j} \sum_{L} Z_{L}^{i}\left(\mathbf{r}_{<}, E\right) J_{L^{\prime}}^{i}\left(\mathbf{r}_{>}, E\right)$ where Z_{L}^{n} and J_{L}^{n} are respectively the regular and irregular solutions to the Schrödinger equation for a single site potential v_{n}. $\quad\left(r=r_{i}+R_{i}, r^{\prime}=r_{j}^{\prime}+R_{j}\right)$.
- Density for DFT: $n(\mathbf{r})=-\frac{1}{\pi} \int_{E_{B}}^{E_{F}} d E \operatorname{Im} G(\mathbf{r}, \mathbf{r}, E)$
- Electronic structure:
- Density of states: $n(E)=-\frac{1}{\pi} \int d \mathbf{r} \operatorname{Im} G(\mathbf{r}, \mathbf{r}, E)$
- Spectral function

$$
\begin{aligned}
& \bar{A}_{B}(\mathbf{k}, E)=-\frac{1}{\pi} \operatorname{Im} \sum_{n m} \exp \left[i \mathbf{k} \cdot\left(\mathbf{R}_{n}-\mathbf{R}_{m}\right)\right] \int d \mathbf{r} G\left(\mathbf{r}+\mathbf{R}_{n}, \mathbf{r}+\mathbf{R}_{m}, E\right) \\
& \rightsquigarrow \bar{A}_{B}(\mathbf{k}, E)=\sum_{n} \delta\left(E-E_{n}(\mathbf{k})\right) .
\end{aligned}
$$

In disordered systems peaks broaden but their positions give an effective band structure, with their width in energy interpreted as an inverse lifetime.

- $<G^{i j}>=G_{0}^{i j}+\sum_{k l} G_{0}^{i k} \Xi^{k l}<G^{l j}>$
- $\bar{G}(\mathbf{k})=\frac{1}{N} \sum_{j}<G^{i j}>e^{i \mathbf{k} \cdot\left(\mathbf{R}_{i}-\mathbf{R}_{j}\right)}=\left(G_{0}^{-1}(\mathbf{k})-\equiv(\mathbf{k})\right)^{-1}$
- $\overline{(k)}$ is a self energy.

Cluster Approximation

Cluster Approximation

- $G_{I J}^{\eta}=\left[\underline{G}^{0,-1}+\equiv-\underline{V}^{\eta}\right]_{I J}^{-1}$
- $\sum_{\eta} P(\eta) G_{I J}^{\eta}=\hat{G}_{I J} \approx\left\langle G_{I J}\right\rangle$

Cluster Approximation

- $G_{I J}^{\eta}=\left[\underline{G}^{0,-1}+\equiv-\underline{V}^{\eta}\right]_{I J}^{-1}$
- $\sum_{\eta} P(\eta) G_{I J}^{\eta}=\hat{G}_{I J} \approx<G_{I J}>$
- $\hat{G}_{I J}=\frac{1}{\Omega_{B Z}} \sum_{\mathbf{K}_{n}} \int\left[G^{0}(\mathbf{k})-\equiv\left(\mathbf{K}_{n}\right]^{-1} e^{i \mathbf{K}_{n} \cdot\left(\mathbf{R}_{I}-\mathbf{R}_{J}\right)} d \mathbf{k}_{n}\right.$.

The paramagnetic state of transition metal oxides

The electronic structure for MnO in its paramagnetic (DLM) state. The loci of the peaks of the Bloch spectral function with the shading showing the spin fluctuation disorder broadening of these quasi-particle peaks.

DOS for MnO on Mn and O sites (dashed). The left (right) panel shows the DOS associated with electrons with spins parallel (anti-parallel) to the local moment on the site. Note the sizeable gap of the paramagnetic state.
I.D.Hughes et al., New .J.Phys.10, 063010, (2008)

Transition from HAFM to FM - Fermi surface nesting

Theoretical FS for paramagnetic Gd and Dy.

Transition from HAFM to FM - Fermi surface nesting

Theoretical FS for paramagnetic Gd and Dy.

K.M.Dobrich et al., Phys.Rev.Lett. 104, 246401, (2010)

