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KKR for large systems

16000 atoms

Fe nanoparticle in FeAl matrix
LSMS method (Oak Ridge)

from http://www.psc.edu/science/2006/nano.html

8000 atoms
disordered GeSb,Te, alloy
KKRnano (Jiilich)

from A. Thiess, thesis (2011)



Computational bottleneck

work in standard methods scales as O(N?)
for IN occupied orbitals (or electrons, atoms, ...)
because of eigenvalue problem and orthogonalization

today petascale computing

Titan (Oak Ridge) Blue Gene/Q (Jiilich)

increase of computing power by a factor 1000
future? exascale computing increase of number of atoms by a factor 10
increase of length scale by a factor v/10 ~ 2

better scaling needed = O(N?) or O(N) methods



Supercomputing complexity

e old well tested codes are not well
suited for modern supercomputing

e development of new codes for su-
percomputing takes many years

e this dilemma concerns codes as
well as the underlying ideas

advantage of KKR

e main work consists in solving linear
equations

JUQUEEN: 28 racks (458,752 cores)

Rack: 32 nodeboards (16,384 cores)
Nodeboard: 32 compute nodes

Node: 16 cores with 16 GB memory per node
Core: 16-way SMP processor

Maximal parallelisation: 1835008 MPI tasks

Power: on average 1.9 MW in 2012
Peak performance: 5.872 Petaflops
Linpack performance: 5.009 Petaflops



Structure of the KKR Green function equations

G(r+ R 7' + R") = 8,wG"(r,1') + Y RE(r)GyL Ry (1)

Lr’

e divide space into cells n

e solve single-cell problems
G (r,r") = G(r, ') + / G(r, ")V (r")GL(r", r')dr”

e
s

<3

) Ry (r) = Ji(r) + / GO (r, ")V (r")R} (r')dr’

R" e use matrix equation

nn’ r.nn’ } : r.nn’ n' "ot
GLL/ — GL,L/ + GL,L// AtL//L/// Gz//;nL/
! LML

Aty = [ R @AVE@)R} (@)

a single cutoff parameter [,,,, determines accuracy and matrix size
single-cell problems can be solved in parallel with O(IN) work
matrix equation is independent of the radial resolution used



Linear scaling

physics and chemistry both tell us that properties of materials are local

Locality principle in wave mechanics

W. KOHN AND A. YANIV

Proc. Natl. Acad. Sci. USA
Vol. 75, No. 11, pp. 5270-5272, November 1978

Physics

nearsightedness principle Kohn PRL 1996

in systems without long range electric
fields (and for fixed chemical poten-
tial) the density change at a point in
space is negligibly affected, if the elec-
tronic potential is changed sufficiently
far away from this point

Nearsightedness of electronic matter

E. Prodan'™s and W. Kohn'

PNAS | August 16,2005 | vol. 102 | no.33 | 11635-11638

Hard wall

Fig. 3. The system is divided into smaller volumes V/, {(nine in this example),
with buffer zones B, (gray).



Divide and conquer techniques

e original DC method: Yang PRL 1991

e charge patching method: Wang PRL 2002
e LSMS method: Wang et al. PRL 1995

e LSGF method: Abrikosov et al. PRL 1996

e and others

16000 atoms

charge distribution of
Fe nanoparticle in FeAl matrix

LSMS method
Stocks, Wang et al.

an example:

from http://www.psc.edu/science/2006/nano.html




General basis for linear scaling

e reduce computing effort by tolerating small loss of precision

e exploit locality of the potential and quasi-locality of Vf
= sparse matrix computations

e apply iterative solution for sparse matrix equations
e use nearsightedness by neglecting potential changes for away

e use supercomputing with massive parallelization

implementation in KKR?



Concept of a repulsive reference system

infinite array of repulsive potentials = a finite energy FE, exists such that
e reference system has no eigenstates below E
e relevant energies FE in DFT satisfy £ < Ej
e reference Green function decays exponentially for £ < FE,

e neglect of exponentially small elements =- sparse matrices

e real space calculation of structure constants
e clusters of about 50 atoms are sufficient
e decay is property of the reference system

Zeller et al. PRB 1995




Iterative solution

e the Green function matrices are complex and non-Hermitian

e the Green function as function of energy has singularities for real E
due to atomic core states and valence and conduction band states

ir
z=E+il

’ = E

o finite temperature DFT Mermin PR 1965, Wildberger et al. PRB 1995

e straightforward iterations diverge

complex energy integration Zeller et al. SSC 1982

n(r) = —%Im /_oo f(E,T)G(r,r, E)dE

G = G" + G"AtGY

quasi-minimal-residual (QMR) method works

e highly parallelizable, no loss of precision = O(IN?) method




KKRnano

e KKRnano is a new code (presently implemented in supercell mode)

nanosystems contain many atoms

?
e why nano (8000 in a cube of 6 nm length)

e work with A. Thiess, E. Rabel, M. Bolten, P. H. Dederichs, S. Bliigel

accuracy (in meV) scaling behavior
Cu Pd
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computing time O(NjN,N?)
efficient parallelization is possible
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Parallelization strategy

KKRnano uses four levels of parallelization
with MPI groups and communicators and
point-to-point and collective messages

e parallelization over atoms (is efficient)

¢ parallelization over two spin directions test system: NiPd3071
(is trivial and efficient) 16
e parallelization over energy points
(2 or 3 panels dynamically load balanced) N 2
=
e parallelization over L components 38 f

(until now only in matrix equation)

e optionally OpenMP threads instead of L 2

pal’a"elization 36864 73728 47436 294912

number of processors



Preconditioning
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Convergence at all energy points
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Bolten et al. Lin. Alg. Appl. 2012



Phase change material: GeSb,Te,

ARTICLES nawre
PUBLISHED ONLINE: 14 OCTOBER 2012 | DOI:10.1038/NMAT3456 materlals

Role of vacancies in metal-insulator transitions of
crystalline phase-change materials

W. Zhang', A. Thiess??, P, Zalden?, R. Zeller?, P. H. Dederichs?, J-Y. Raty®, M. Wuttig*®*, S. Bliigel>®
and R. Mazzarello"$*
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Figure 1| Local density of p states (LDOS) on the 500 Te sitesina
Ge25Sbasg Tesoo supercell. Different colours are used to distinguish
between Te atoms with different number of nearest-neighbour vacancies,
Nvac. For each of these groups the average LDOS is shown as a thick line it
the corresponding colour. An increasing number of nearest-neighbour
vacancies leads to a pronounced increase in the LDOS near Ef. This is
further corroborated in the inset, which shows the average LDOS on Te
atoms at Er as a function of ny,, calculated from the larger
665125b1024T6204g supercell.



Linear scaling mode

( Acc Acr ) G\ _ [ AccGly
Arc ARr 0 ArcGY),
use G(ZH) ACCG(i) and

replace G( 1) — — Apg G o by 0

C' denotes inner space and R outer space

e truncate:

wall

time per iteration (s)

nearsightedness principle

’ ’
?ﬂ?l’m’ = 0 for |En - En | > Teut

e truncation leads to O(1) memory/processor

e truncation leads to O(IN) computing time

clock time O(N?) vs. O(N)
processors
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Truncation error for total energies

Pd: 16384 atoms, 1 =2
max
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Ag5OPd50: 16384 atoms, lmaX=2
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if total energy errors of several meV /atom are tolerated,

1
3000

truncation regions with 1000 to 2000 atoms seem to be large enough



Truncation error for total energies

Pd: 16384 atoms, lmaX=2 AgSOPdSO: 16384 atoms, lmaX=2
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attainable total energy precisions
about 0.1 meV/atom with truncation regions of a few thousand atoms
about 1 meV/atom with truncation regions of a few hundred atoms
important: s channels are described by matrix blocks of size 1 X 1 instead of size

(lmax + 1)? X (Imax + 1)? = reduces number of flops by a factor of (I, + 1)°



Accuracy ?



Forces: KKR compared to VASP

Fe Pd,, fcc positions
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Amorphous system: Cri5Ge;5Sby;Teiog

el ADVANCED
M oS MATERTALS

www.advmat.de

www.MaterialsViews.com

Magnetic Properties of Crystalline and Amorphous Phase-
Change Materials Doped with 3d Impurities

Wei Zhang, Ider Ronneberger, Yan Li, and Riccardo Mazzarello*
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216 atomic positions were determined by PWSCF

125 empty cells were added for KKRnano (at sites determined by E. Rabel)



KKR total energy convergence with [,
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Mathematical basis for the KKR method

oo m=l

Instead of G(r,1'5€) = —ive Y > Gi(r<vVe)hi(r>v/€)Yim(#) Yim ()
=0 m=-1
lmax m=l

use G(r,r'5€) = —ive ) Y Gi(revVe)hu(rsve)Yim(#) Yim (')
=0 m=-—1

and solve the integral equations for this approximation. This can be done exactly.
Zeller JPCM 2013

important results:

lmax
¢ G(r+R", '+ R";€) = Y _Gyh(r,v';€)Yi(7) Y/ (#') is exact
Lr’

e rate of convergence of ImG with [,,., is exponential

consequence of optical theorem G — GT = (1 + GV)(G° — G*")(1 + VG') and j;(x) = ' /(21 + 1)!!



Total energy functional

Eior[n(r)] = Ts[n(r)] + Uln(r)] + Een[n(r)] + Enn + Exc[n(r)]
E,.[n(r)] must be approximated, for T;[n(r)] exact result is known:

Tn() =2 / drt(r) (—V2)pi(r)

but exact solution of {—Vi + V(z)} wi(r) = €;p;(r) is necessary

Principal challenge is the finite number of potential matrix elements

in plane wave methods: V(G,G’) = /dﬁ e iGr V(r) elG'T

in the KKR method: V", (r) = / A7 Vi (7) V(1) Yiruw (7)

n



Additional complication in the KKR method

non-linear dependence on € prevents invariance for constant potential shifts

Projection potentials and total energy convergence in the KKR method 15

=

e error arises from setting
Vimitm: = 0 for l? I > Imax

e this approximation is harmless
during the selfconsistency iterations
and for calculating E4.

Energy deviation (Ryd)
=
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e this approximation crucially affects
single-particle energies E,

(T R high ... only for E,
v Ryd) — use hig only fTor L,

mnt

Figure 2. Total energy for Al as function of Vi,, the prescribed value for the average
of the interstitial potential. The numbers at the curves indicate the value used for

lmax-



Correction for single-particle energies
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lmax = 8 correction applied only to single-particle energies

KKR matrix equation solved with [,,,, < 8

single-particle energies calculated with Lloyd’s formula for .., = 8
correction necessary only at the end of the self-consistency steps
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Conclusions

e precise DFT calculations for large system are possible
(needed for advanced material science problems)

e our approach KKRnano uses

— repulsive reference system = sparse matrices
— iterative solutions with the QMR method

— efficient parallelization on modern supercomputers
e KKRnano requires

— O(N?) computing time and O(N) memory
if no compromise on accuracy is made

— O(N) computing time and O(1) memory
if total energy errors of meV are tolerated (>~ 2000 atoms needed)

e largest systems up-to-date

— 65536 atoms with [,,,,x = 3 (shape memory alloy Ni;MnGa)
— 262144 atoms with [, = 2 (disordered AgPd alloy)

— work in progress: half a million atoms



Conclusions

e the KKR method is accurate and efficient for solving the KS equation

e number of potential matrix elements determines the total energy accuracy

— higher number required for E,

— smaller number sufficient for n(r) and Eq4.
e improvements planned for KKRnano

— efficient Ewald method for the electrostatic potential in large systems
— removal of near field errors in the electrostatic potential
— accurate calculation of irregular single-site solutions near the origin

e open question

can a total energy functional be formulated that is stationary
when potential matrix elements are neglected



