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KKR for large systems

x

16000 atoms

Fe nanoparticle in FeAl matrix
LSMS method (Oak Ridge)
from http://www.psc.edu/science/2006/nano.html

8000 atoms

disordered GeSb2Te4 alloy
KKRnano (Jülich)
from A. Thiess, thesis (2011)



Computational bottleneck

work in standard methods scales as O(N3)
for N occupied orbitals (or electrons, atoms, ...)
because of eigenvalue problem and orthogonalization

today petascale computing

Titan (Oak Ridge) Blue Gene/Q (Jülich)

x

future? exascale computing

increase of computing power by a factor 1000
increase of number of atoms by a factor 10
increase of length scale by a factor 3

√
10 ≈ 2

better scaling needed ⇒ O(N2) or O(N) methods



Supercomputing complexity

x
• old well tested codes are not well

suited for modern supercomputing

• development of new codes for su-
percomputing takes many years

• this dilemma concerns codes as
well as the underlying ideas

advantage of KKR

• main work consists in solving linear
equations

x



Structure of the KKR Green function equations

G(r +Rn, r′ +Rn′) = δnn′G
n
s (r, r′) +

∑
LL′

Rn
L(r)Gnn′

LL′R
n′
L′(r

′)

• divide space into cells n

• solve single-cell problems

Gn
s (r, r′) = G0(r, r′) +

∫
n

G0(r, r′′)V (r′)Gn
s (r′′, r′)dr′′

Rn
L(r) = JL(r) +

∫
n

G0(r, r′)V (r′′)Rn
L(r′)dr′

• use matrix equation

Gnn′

LL′ = Gr,nn′

LL′ +
∑

n′′L′′L′′′

Gr,nn′′

LL′′ ∆tn
′′

L′′L′′′G
n′′n′

L′′′L′

∆tnLL′ =

∫
n

Rr,n
L (r)∆V (r)Rn

L′(r)dr

x
a single cutoff parameter lmax determines accuracy and matrix size

single-cell problems can be solved in parallel with O(N) work

matrix equation is independent of the radial resolution used



Linear scaling

physics and chemistry both tell us that properties of materials are local

x

xx

nearsightedness principle Kohn PRL 1996

in systems without long range electric
fields (and for fixed chemical poten-
tial) the density change at a point in
space is negligibly affected, if the elec-
tronic potential is changed sufficiently
far away from this point



Divide and conquer techniques

• original DC method: Yang PRL 1991

• charge patching method: Wang PRL 2002

• LSMS method: Wang et al. PRL 1995

• LSGF method: Abrikosov et al. PRL 1996

• and others

x

an example:

16000 atoms

charge distribution of
Fe nanoparticle in FeAl matrix
LSMS method

Stocks, Wang et al.

from http://www.psc.edu/science/2006/nano.html



General basis for linear scaling

• reduce computing effort by tolerating small loss of precision

• exploit locality of the potential and quasi-locality of ∇2
r

⇒ sparse matrix computations

• apply iterative solution for sparse matrix equations

• use nearsightedness by neglecting potential changes for away

• use supercomputing with massive parallelization

x

implementation in KKR?



Concept of a repulsive reference system

infinite array of repulsive potentials ⇒ a finite energy E0 exists such that

• reference system has no eigenstates below E0

• relevant energies E in DFT satisfy E < E0

• reference Green function decays exponentially for E < E0

• neglect of exponentially small elements ⇒ sparse matrices

• real space calculation of structure constants

• clusters of about 50 atoms are sufficient

• decay is property of the reference system

Zeller et al. PRB 1995



Iterative solution

• the Green function matrices are complex and non-Hermitian

• the Green function as function of energy has singularities for real E
due to atomic core states and valence and conduction band states

x

E

iΓ
z = E + iΓ

EF

complex energy integration Zeller et al. SSC 1982

n(r) = −
1

π
Im

∫ ∞
−∞

f(E, T )G(r, r, E)dE

• finite temperature DFT Mermin PR 1965, Wildberger et al. PRB 1995

• straightforward iterations diverge G(i+1) = Gr +Gr∆tG(i)

quasi-minimal-residual (QMR) method works

• highly parallelizable, no loss of precision ⇒ O(N2) method



KKRnano

x• KKRnano is a new code (presently implemented in supercell mode)

• why nano?
nanosystems contain many atoms
(8000 in a cube of 6 nm length)

• work with A. Thiess, E. Rabel, M. Bolten, P. H. Dederichs, S. Blügel

accuracy (in meV) scaling behavior

.

x

any desired accuracy can be achieved
computing time O(NitNclN

2)

efficient parallelization is possible



Parallelization strategy

KKRnano uses four levels of parallelization
with MPI groups and communicators and
point-to-point and collective messages

• parallelization over atoms (is efficient)

• parallelization over two spin directions
(is trivial and efficient)

• parallelization over energy points
(2 or 3 panels dynamically load balanced)

• parallelization over L components
(until now only in matrix equation)

• optionally OpenMP threads instead of L
parallelization

.

test system: NiPd3071

36864 73728 147456 294912

number of processors

2

4

8

16
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Preconditioning

1. replace AX = B

by (AP−1)(PX) = B

2. split unit cell into subcells

3. divide matrix A into subblocks

4. average over equivalent subblocks

5. construct P from the averages

6. invert P in reciprocal space

multi-level block-circulant preconditioning



Convergence at all energy points

Bolten et al. Lin. Alg. Appl. 2012



Phase change material: GeSb2Te4



Linear scaling mode

n’

nearsightedness principle

• truncate: Gnn′
lml′m′ = 0 for |Rn −Rn′| > rcut

• truncation leads to O(1) memory/processor

• truncation leads to O(N) computing time

wall clock time O(N2) vs. O(N)

.

(
ACC

ARC

ACR

ARR

)(
G

(i)
CC

0

)
=

(
ACCG

(i)
CC

ARCG
(i)
CC

)
x
use G

(i+1)
CC = ACCG

(i)
CC and

replace G
(i+1)
RC = ARCG

(i)
CC by 0

C denotes inner space and R outer space



Truncation error for total energies
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if total energy errors of several meV/atom are tolerated,

truncation regions with 1000 to 2000 atoms seem to be large enough



Truncation error for total energies
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non-zero l=0 elements

non-zero l=0,1 elements

attainable total energy precisions

about 0.1 meV/atom with truncation regions of a few thousand atoms

about 1 meV/atom with truncation regions of a few hundred atoms

important: s channels are described by matrix blocks of size 1× 1 instead of size

(lmax + 1)2 × (lmax + 1)2 ⇒ reduces number of flops by a factor of (lmax + 1)6
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Forces: KKR compared to VASP
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disordered alloy simulated by supercell with 500 atoms



Amorphous system: Cr15Ge15Sb41Te120
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PWSCF (Quantum Espresso) KKRnano x

216 atomic positions were determined by PWSCF

125 empty cells were added for KKRnano (at sites determined by E. Rabel)



KKR total energy convergence with lmax

Zeller et al. Phil. Mag. 1998

Moghadam et al. JPCM 2002
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Mathematical basis for the KKR method

Instead of G0(r, r′; ε) = −i
√
ε

∞∑
l=0

m=l∑
m=−l

jl(r<
√
ε)hl(r>

√
ε)Ylm(r̂)Ylm(r̂′)

use G0(r, r′; ε) = −i
√
ε

lmax∑
l=0

m=l∑
m=−l

jl(r<
√
ε)hl(r>

√
ε)Ylm(r̂)Ylm(r̂′)

and solve the integral equations for this approximation. This can be done exactly.

Zeller JPCM 2013
x

important results:

• G(r +Rn, r′ +Rn′; ε) =

lmax∑
LL′

Gnn′LL′(r, r
′; ε)YL(r̂)YL′(r̂

′) is exact

• rate of convergence of ImG with lmax is exponential

consequence of optical theoremG−G+ = (1 +GV )(G0 −G0+)(1 + V G+) and jl(x) ≈ xl/(2l + 1)!!



Total energy functional

Etot[n(r)] = Ts[n(r)] + U [n(r)] + Een[n(r)] + Enn + Exc[n(r)]

Exc[n(r)] must be approximated, for Ts[n(r)] exact result is known:

Ts[n(r)] = 2
∑
i

∫
drϕ?i (r)(−∇

2
r)ϕi(r)

but exact solution of
[
−∇2

r + V (r)
]
ϕi(r) = εiϕi(r) is necessary

x
Principal challenge is the finite number of potential matrix elements

in plane wave methods: V (G,G′) =

∫
dr e−iGr V (r) eiG′r

in the KKR method: V n
lm,l′m′(r) =

∫
n

dr̂ Ylm(r̂)V (r)Yl′m′(r̂)

...



Additional complication in the KKR method

non-linear dependence on ε prevents invariance for constant potential shifts

x

• error arises from setting
Vlml′m′ = 0 for l, l′ > lmax

• this approximation is harmless
during the selfconsistency iterations
and for calculating Edc

• this approximation crucially affects
single-particle energies Esp

⇒ use high lmax only for Esp



Correction for single-particle energies
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lmax = 8 correction applied only to single-particle energies

KKR matrix equation solved with lmax < 8

single-particle energies calculated with Lloyd’s formula for lmax = 8

correction necessary only at the end of the self-consistency steps



KKR total energy convergence with lmax

x

total energy calculated
with correction applied to Esp
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Conclusions

• precise DFT calculations for large system are possible
(needed for advanced material science problems)

• our approach KKRnano uses

– repulsive reference system ⇒ sparse matrices

– iterative solutions with the QMR method

– efficient parallelization on modern supercomputers

• KKRnano requires

– O(N2) computing time and O(N) memory
if no compromise on accuracy is made

– O(N) computing time and O(1) memory
if total energy errors of meV are tolerated (>≈ 2000 atoms needed)

• largest systems up-to-date

– 65536 atoms with lmax = 3 (shape memory alloy Ni2MnGa)

– 262144 atoms with lmax = 2 (disordered AgPd alloy)

– work in progress: half a million atoms



Conclusions

• the KKR method is accurate and efficient for solving the KS equation

• number of potential matrix elements determines the total energy accuracy

– higher number required for Esp

– smaller number sufficient for n(r) and Edc

• improvements planned for KKRnano

– efficient Ewald method for the electrostatic potential in large systems

– removal of near field errors in the electrostatic potential

– accurate calculation of irregular single-site solutions near the origin

• open question

can a total energy functional be formulated that is stationary
when potential matrix elements are neglected


