

KKR and massively parallel computing

Rudolf Zeller

Institute for Advanced Simulation Forschungszentrum Jülich, D-52425 Jülich, Germany

KKR for large systems

16000 atoms

Fe nanoparticle in FeAl matrix LSMS method (Oak Ridge)

from http://www.psc.edu/science/2006/nano.html

8000 atoms disordered GeSb₂Te₄ alloy KKRnano (Jülich)

from A. Thiess, thesis (2011)

Computational bottleneck

work in standard methods scales as $O(N^3)$ for N occupied orbitals (or electrons, atoms, ...) because of eigenvalue problem and orthogonalization

today petascale computing

Titan (Oak Ridge)

Blue Gene/Q (Jülich)

future? exascale computing

increase of computing power by a factor 1000 increase of number of atoms by a factor 10 increase of length scale by a factor $\sqrt[3]{10} \approx 2$

better scaling needed $\Rightarrow O(N^2)$ or O(N) methods

Supercomputing complexity

- old well tested codes are not well suited for modern supercomputing
- development of new codes for supercomputing takes many years
- this dilemma concerns codes as well as the underlying ideas

advantage of KKR

• main work consists in solving linear equations

JUQUEEN: 28 racks (458,752 cores) Rack: 32 nodeboards (16,384 cores) Nodeboard: 32 compute nodes Node: 16 cores with 16 GB memory per node Core: 16-way SMP processor Maximal parallelisation: 1835008 MPI tasks Power: on average 1.9 MW in 2012 Peak performance: 5.872 Petaflops Linpack performance: 5.009 Petaflops

Structure of the KKR Green function equations

$$G(\underline{r} + \underline{R}^n, \underline{r}' + \underline{R}^{n'}) = \delta_{nn'}G_s^n(\underline{r}, \underline{r}') + \sum_{LL'}R_L^n(\underline{r})G_{LL'}^{nn'}R_{L'}^{n'}(\underline{r}')$$

a single cutoff parameter l_{\max} determines accuracy and matrix size single-cell problems can be solved in parallel with O(N) work matrix equation is independent of the radial resolution used

Linear scaling

physics and chemistry both tell us that properties of materials are local

Locality principle in wave mechanics

W. KOHN AND A. YANIV

Proc. Natl. Acad. Sci. USA Vol. 75, No. 11, pp. 5270–5272, November 1978 Physics

Nearsightedness of electronic matter

E. Prodan^{†‡§} and W. Kohn[†]

PNAS | August 16, 2005 | vol. 102 | no. 33 | 11635–11638

nearsightedness principle Kohn PRL 1996 in systems without long range electric fields (and for fixed chemical potential) the density change at a point in space is negligibly affected, if the electronic potential is changed sufficiently far away from this point

Fig. 3. The system is divided into smaller volumes V_n (nine in this example), with buffer zones B_n (gray).

Divide and conquer techniques

- original DC method: Yang PRL 1991
- charge patching method: Wang PRL 2002
- LSMS method: Wang et al. PRL 1995
- LSGF method: Abrikosov et al. PRL 1996
- and others

16000 atoms

charge distribution of Fe nanoparticle in FeAI matrix LSMS method

Stocks, Wang et al.

from http://www.psc.edu/science/2006/nano.html

an example:

General basis for linear scaling

- reduce computing effort by tolerating small loss of precision
- exploit locality of the potential and quasi-locality of $\nabla^2_{\underline{r}}$ \Rightarrow sparse matrix computations
- apply iterative solution for sparse matrix equations
- use nearsightedness by neglecting potential changes for away
- use supercomputing with massive parallelization

implementation in KKR?

Concept of a repulsive reference system

infinite array of repulsive potentials \Rightarrow a finite energy E_0 exists such that

- ullet reference system has no eigenstates below E_0
- relevant energies E in DFT satisfy $E < E_0$
- reference Green function decays exponentially for $E < E_0$
- neglect of exponentially small elements \Rightarrow sparse matrices

- real space calculation of structure constants
- clusters of about 50 atoms are sufficient
- decay is property of the reference system Zeller et al. PRB 1995

Iterative solution

- the Green function matrices are complex and non-Hermitian
- the Green function as function of energy has singularities for real E due to atomic core states and valence and conduction band states

- finite temperature DFT Mermin PR 1965, Wildberger et al. PRB 1995
- straightforward iterations diverge $G^{(i+1)} = G^r + G^r \Delta t G^{(i)}$ quasi-minimal-residual (QMR) method works
- highly parallelizable, no loss of precision $\Rightarrow O(N^2)$ method

KKRnano

- KKRnano is a new code (presently implemented in supercell mode)
- why nano?

nanosystems contain many atoms (8000 in a cube of 6 nm length)

• work with A. Thiess, E. Rabel, M. Bolten, P. H. Dederichs, S. Blügel

r	accuracy (in Cu		meV) Pd	
	$\Delta E_{\rm tot}$	$N_{ m it}$	$\Delta E_{\rm tot}$	$N_{\rm it}$
10^{-3}	5.3740	403	2.3790	234
10^{-4}	0.3456	528	0.4179	315
10^{-5}	0.0055	670	0.0167	397
10^{-6}	0.0003	814	0.0015	463

any desired accuracy can be achieved computing time $O(N_{\rm it}N_{\rm cl}N^2)$ efficient parallelization is possible

scaling behavior

Parallelization strategy

KKRnano uses four levels of parallelization with MPI groups and communicators and point-to-point and collective messages

- parallelization over atoms (is efficient)
- parallelization over two spin directions (is trivial and efficient)
- parallelization over energy points
 (2 or 3 panels dynamically load balanced)
- parallelization over *L* components (until now only in matrix equation)
- optionally OpenMP threads instead of L parallelization

Preconditioning

- 1. replace AX = Bby $(AP^{-1})(PX) = B$
- 2. split unit cell into subcells
- 3. divide matrix A into subblocks
- 4. average over equivalent subblocks
- 5. construct P from the averages
- **6.** invert P in reciprocal space

multi-level block-circulant preconditioning

Convergence at all energy points

Bolten et al. Lin. Alg. Appl. 2012

Phase change material: GeSb₂Te₄

Role of vacancies in metal-insulator transitions of crystalline phase-change materials

W. Zhang¹, A. Thiess^{2,3}, P. Zalden⁴, R. Zeller², P. H. Dederichs², J-Y. Raty⁵, M. Wuttig^{4,6}*, S. Blügel^{2,6} and R. Mazzarello^{1,6}*

Figure 1 | Local density of *p* states (LDOS) on the 500 Te sites in a Ge₁₂₅Sb₂₅₀Te₅₀₀ supercell. Different colours are used to distinguish between Te atoms with different number of nearest-neighbour vacancies, n_{Vac} . For each of these groups the average LDOS is shown as a thick line in the corresponding colour. An increasing number of nearest-neighbour vacancies leads to a pronounced increase in the LDOS near E_F . This is further corroborated in the inset, which shows the average LDOS on Te atoms at E_F as a function of n_{Vac} , calculated from the larger Ge₅₁₂Sb₁₀₂₄Te₂₀₄₈ supercell.

Linear scaling mode

 $\begin{pmatrix} A_{CC} & A_{CR} \\ A_{RC} & A_{RR} \end{pmatrix} \begin{pmatrix} G_{CC}^{(i)} \\ 0 \end{pmatrix} = \begin{pmatrix} A_{CC}G_{CC}^{(i)} \\ A_{RC}G_{CC}^{(i)} \end{pmatrix}$ use $G_{CC}^{(i+1)} = A_{CC}G_{CC}^{(i)}$ and
replace $G_{RC}^{(i+1)} = A_{RC}G_{CC}^{(i)}$ by 0 C denotes inner space and R outer space

nearsightedness principle

- truncate: $G_{lml'm'}^{nn'} = 0$ for $|\underline{R}^n \underline{R}^{n'}| > r_{cut}$
- truncation leads to O(1) memory/processor
- truncation leads to O(N) computing time

wall clock time $O(N^2)$ vs. O(N)

Truncation error for total energies

if total energy errors of several meV/atom are tolerated,

truncation regions with 1000 to 2000 atoms seem to be large enough

Truncation error for total energies

attainable total energy precisions

about 0.1 meV/atom with truncation regions of a few thousand atoms about 1 meV/atom with truncation regions of a few hundred atoms important: s channels are described by matrix blocks of size 1×1 instead of size $(l_{\max} + 1)^2 \times (l_{\max} + 1)^2 \Rightarrow$ reduces number of flops by a factor of $(l_{\max} + 1)^6$

Accuracy ?

Forces: KKR compared to VASP

disordered alloy simulated by supercell with 500 atoms

Amorphous system: $Cr_{15}Ge_{15}Sb_{41}Te_{120}$

Mabrials Views www.MaterialsViews.com

Magnetic Properties of Crystalline and Amorphous Phase-Change Materials Doped with 3*d* Impurities

Wei Zhang, Ider Ronneberger, Yan Li, and Riccardo Mazzarello*

216 atomic positions were determined by PWSCF

125 empty cells were added for KKRnano (at sites determined by E. Rabel)

KKR total energy convergence with $l_{\rm max}$

Figure 3. Convergence properties of ΔE_{tot} for fcc (circles) and bcc (squares)

Moghadam et al. JPCM 2002

Mathematical basis for the KKR method

$$\text{Instead of} \quad G^0(\underline{r},\underline{r}';\epsilon) = -\mathrm{i}\sqrt{\epsilon}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}j_l(r_<\sqrt{\epsilon})h_l(r_>\sqrt{\epsilon})Y_{lm}(\underline{\hat{r}})Y_{lm}(\underline{\hat{r}}')$$

use
$$G^0(\underline{r},\underline{r}';\epsilon) = -i\sqrt{\epsilon}\sum_{l=0}^{l_{\max}}\sum_{m=-l}^{m=l} j_l(r_<\sqrt{\epsilon})h_l(r_>\sqrt{\epsilon})Y_{lm}(\underline{\hat{r}})Y_{lm}(\underline{\hat{r}}')$$

and solve the integral equations for this approximation. This can be done exactly. Zeller JPCM 2013

important results:

•
$$G(\underline{r} + \underline{R}^n, \underline{r}' + \underline{R}^{n'}; \epsilon) = \sum_{LL'}^{l_{\max}} \mathcal{G}_{LL'}^{nn'}(r, r'; \epsilon) Y_L(\underline{\hat{r}}) Y_{L'}(\underline{\hat{r}}')$$
 is exact

• rate of convergence of ImG with l_{max} is exponential

consequence of optical theorem $G - G^+ = (1 + GV)(G^0 - G^{0+})(1 + VG^+)$ and $j_l(x) \approx x^l/(2l+1)!!$

Total energy functional

 $E_{ ext{tot}}[n(\underline{r})] = T_{ ext{s}}[n(\underline{r})] + U[n(\underline{r})] + E_{ ext{en}}[n(\underline{r})] + E_{ ext{nn}} + E_{ ext{xc}}[n(\underline{r})]$

 $E_{\rm xc}[n(\underline{r})]$ must be approximated, for $T_{\rm s}[n(\underline{r})]$ exact result is known:

$$T_{
m s}[n({ar r})] = 2\sum_i \int {
m d} {ar r} arphi_i^\star({ar r}) (-
abla_{{ar r}}^2) arphi_i({ar r})$$

but exact solution of $\left[-\nabla_{\underline{r}}^2 + V(\underline{r})\right] \varphi_i(\underline{r}) = \epsilon_i \varphi_i(\underline{r})$ is necessary

Principal challenge is the finite number of potential matrix elements

in plane wave methods:
$$V(\underline{G},\underline{G}') = \int d\underline{r} e^{-i\underline{G}\underline{r}} V(\underline{r}) e^{i\underline{G}'\underline{r}}$$

in the KKR method: $V_{lm,l'm'}^n(r) = \int_n d\underline{\hat{r}} Y_{lm}(\underline{\hat{r}}) V(\underline{r}) Y_{l'm'}(\underline{\hat{r}})$

. . .

Additional complication in the KKR method

non-linear dependence on ϵ prevents invariance for constant potential shifts

15

- error arises from setting $V_{lml'm'}=0$ for $l,l'>l_{
 m max}$
- this approximation is harmless during the selfconsistency iterations and for calculating $E_{
 m dc}$
- this approximation crucially affects single-particle energies $E_{\rm sp}$ \Rightarrow use high $l_{\rm max}$ only for $E_{\rm sp}$

Figure 2. Total energy for Al as function of V_{int} , the prescribed value for the average of the interstitial potential. The numbers at the curves indicate the value used for l_{max} .

Correction for single-particle energies

 $l_{\rm max}=8$ correction applied only to single-particle energies KKR matrix equation solved with $l_{\rm max}<8$ single-particle energies calculated with Lloyd's formula for $l_{\rm max}=8$ correction necessary only at the end of the self-consistency steps

KKR total energy convergence with l_{\max}

total energy calculated with correction applied to $E_{\rm sp}$

Conclusions

- precise DFT calculations for large system are possible (needed for advanced material science problems)
- our approach KKRnano uses
 - repulsive reference system \Rightarrow sparse matrices
 - iterative solutions with the QMR method
 - efficient parallelization on modern supercomputers

KKRnano requires

- $-O(N^2)$ computing time and O(N) memory if no compromise on accuracy is made
- -O(N) computing time and O(1) memory if total energy errors of meV are tolerated (> ≈ 2000 atoms needed)

• largest systems up-to-date

- 65536 atoms with $l_{\rm max} = 3$ (shape memory alloy Ni₂MnGa)
- 262144 atoms with $l_{
 m max}=2$ (disordered AgPd alloy)
- work in progress: half a million atoms

Conclusions

- the KKR method is accurate and efficient for solving the KS equation
- number of potential matrix elements determines the total energy accuracy
 - higher number required for $E_{
 m sp}$
 - smaller number sufficient for $n(\underline{r})$ and $E_{
 m dc}$
- improvements planned for KKRnano
 - efficient Ewald method for the electrostatic potential in large systems
 - removal of near field errors in the electrostatic potential
 - accurate calculation of irregular single-site solutions near the origin

• open question

can a total energy functional be formulated that is stationary when potential matrix elements are neglected