Measuring coherence in macroscopic quantum systems

Benjamin Yadin University of Oxford

28th September 2016 Quantum measurement: a dialog of big and small, Warwick

Quantum at the macroscopic scale?

- What evidence do we have that quantum mechanics holds at the macroscopic scale?
- Various explanations for emergence of classical physics:
 - Decoherence Zurek, RMP 2003
 - Our measurements aren't precise enough to see quantum behaviour Kofler + Brukner, PRL 2007
 Sekatski et. al., PRL 2011
 Raeisi et. al., PRL 2011
 - Intrinsic modifications to quantum theory Bassi et. al., RMP 2013

Quantum at the macroscopic scale?

 How do we even define macroscopic quantum behaviour? Early questions addressed by Leggett – how can we capture the spirit of Schrödinger's cat?

Leggett, Progress of Theoretical Physics Supplement 1980

- 3 general ways this is approached:
 - Rate of decoherence in collapse models
 - Model-independent tests (Bell / Leggett-Garg inequalities)
 - Quantum properties 2 main questions: how quantum and how big?

Quantumness measured by coherence

• Experiments try to create large-scale superposition associated with some preferred observable – generally an extensive observable

Quantumness measured by coherence

- Resource theory of coherence Baumgratz et. al., PRL 2014
 - defined with respect to a preferred basis $\{|i\rangle\}$
 - aims to distinguish a superposition from a classical mixture
- Which states have zero coherence?

Incoherent states:
$$\rho = \sum_{i} p_i |i\rangle \langle i|$$

• Which operations cannot create coherence?

Incoherent operations: incoherent state \rightarrow incoherent state

Quantumness measured by coherence

• Measures of coherence must satisfy 2 main conditions:

1) Zero for incoherent states

2) Cannot increase under incoherent operations

• Typically some function of off-diagonal elements, e.g. $\sum_{i\neq j} |
ho_{i,j}|$

Coherence with a scale attached

There's a problem: can't distinguish between micro and macro!

Instead: fix an observable $A = \sum_{i} a_i |i\rangle \langle i|$

• Need to insert a concept of scale:

- Introduce δ -coherence: superposition of $|i\rangle$ and $|j\rangle$ such that $a_i a_j = \delta$
- The δ -coherence in a state ρ is a function of the elements $\rho_{i,j}$ associated with a superposition of scale δ
- Restrict the incoherent operations so they can't create δ -coherence different δ are not interchangeable

BY + Vlatko Vedral, PRA 93, 022122 (2016)

Measuring macroscopic coherence

• For **pure states**, the variance is a good measure:

$$V(|\psi\rangle, A) = \langle \psi | A^2 | \psi \rangle - \langle \psi | A | \psi \rangle^2$$

• Natural interpretation as coherent spread of wavefunction

• Given some reference coherence unit $|\phi\rangle$, we can also say that one copy of $|\psi\rangle$ is worth $\frac{V(|\psi\rangle, A)}{V(|\phi\rangle, A)}$ copies of $|\phi\rangle$

(variance is the unique asymptotic measure)

Measuring macroscopic coherence

- For **general (mixed) states**, the correct extension is given by the quantum Fisher information (QFI)
- The QFI is $\,\mathcal{F}(\rho,A):=4\,\partial_t^2 D_B^2(\rho,e^{-itA}\rho e^{itA})$

where D_B is the Bures distance

• Can think of the QFI as a "quantum variance"

• $\frac{\mathcal{F}(\rho, A)}{4V(|\phi\rangle, A)}$ = value of ρ in units of $|\phi\rangle$ (cost of preparation)

Measuring macroscopicity

We can identify two interesting measures:

- 1. Extensive measure $N_{\text{ext}}(\rho, A) = \frac{\mathcal{F}(\rho, A)}{4A_0^2}$
 - Total amount of coherence, measured in suitable atomic-scale units, e.g. for momentum, take $P_0 = \hbar/a_0$
- 2. Effective size

$$N_{\text{eff}}(\rho, A) = \frac{\mathcal{F}(\rho, A)}{4\sum_{i=1}^{N} V(\rho, A_i)}$$

- Choose a set of *N* subsystems
- Measures total coherence relative to size of subsystems
- Tells us about number of quantum-correlated subsystems (multipartite entanglement witness)

Measuring macroscopicity

Estimates for real and hypothetical systems:

	$N_{ m ext}$		$N_{\rm eff}$	
Experiment	Q	P	Q	P
Molecular	$10^{14} - 10^{15}$	$10^{-9} - 10^{-8}$	30 - 300	1
diffraction				
SQUID	-	$10^4 - 10^6$	1	$10^7 - 10^9$
Proposed	-	10^{9}	1	10^{12}
SQUID				
Proposed	10^{25}	-	10^{9}	-
micromirror				
Actual cat	10^{46}	-	10^{26}	-

$$Q = M X_{CM}$$

 $P = \text{total momentum}$

$$N_{\rm ext}(\rho, A) = \frac{\mathcal{F}(\rho, A)}{4A_0^2}$$

$$N_{\text{eff}}(\rho, A) = \frac{\mathcal{F}(\rho, A)}{4\sum_{i=1}^{N} V(\rho, A_i)}$$

Molecular diffraction: S. Gerlich et al., Nature Communications 2, 263 (2011)

SQUID: J. R. Friedman et al., Nature 406, 43 (2000)

Hypothetical experiments as described in: S. Nimmrichter and K. Hornberger, PRL 110, 160403 (2013).

Measuring macroscopicity in the lab

1. Interference patterns

- Measure response of system to a small perturbation (inverse of metrology!)
- Basic idea: high QFI given by high-visibility and high-frequency fringes
- Analysis of spin and photonic systems in preparation by Florian Fröwis: effective sizes up to 70

2. Multi-copy interferometry

• Have to do a controlled swap on two copies of system – not easy! Girolami, PRL 113, 170401 (2014)

3. Linear response

- Perturb system at different frequencies and measure response
- E.g. Can probe condensed matter systems with neutron scattering Hauke et. al., Nature Physics 12, 8 (2016)

Relating back to other concepts...

• Actually a close connection with collapse models:

QFI can be related to decoherence rate in large class of models (those in Nimmrichter + Hornberger, PRL 2012)

BY + Vlatko Vedral, PRA 93, 022122 (2016)

• Also a connection with Leggett-Garg inequalities:

Violation of an LGI requires the system to be disturbed by an intermediate measurement

Suppose this is a noisy measurement with uncertainty Δ . Then LGI violation can be observed only if $\mathcal{F} \gtrsim \Delta^2$

Fröwis et al., PRL 116, 090802 (2016)

Conclusion

- Coherence is a natural language for assessing experiments testing the superposition principle
- Have a mathematical framework for defining measures
- Quantum Fisher information is a notable measure with "coherence cost" interpretation
- Gives 2 different ways of quantifying macroscopicity extensive measures and effective sizes
- QFI is observable though it is not clear which detection technique is the most easily scalable