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Outline

1. EPRB experiment and the CHSH inequalities

2. The Leggett-Garg situation and its difficulties with
no-signalling.

3. Improvement using quasi-probabilities

4. A non-invasive measurement protocol

General goal: to find a formulation of LG which parallels EPRB as
closely as possible. In particular to what extent does there exist an
analogue of Fine’s theorem?

Main points: A partial parallel is possible and leads to an enriched
perspective on macrorealism.

JJH, Phys Rev A93, 022123 (2016); arXiv:1605.09241
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1.1 The EPRB Experiment

The EPRB experiment tests Local Realism.

Figure: Measurements are made of p(s1, s3), p(s1, s4), p(s2, s3), p(s2, s4),
where si = ±1.
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1.2 EPRB

• p(s1, s3), p(s1, s4), p(s2, s3), p(s2, s4) satisfy no signalling (NS):∑
s1

p(s1, s3) = p(s3) =
∑
s2

p(s2, s3), etc .

• Seek a probability p(s1, s2, s3, s4) such that

p(s1, s3) =
∑
s2,s4

p(s1, s2, s3, s4), etc .

• If such a probability exists then the correlation functions

Cij =
∑

s1,s2,s3,s4

si sj p(s1, s2, s3, s4),

satisfy the eight CHSH inequalities

−2 ≤ C13 + C14 + C23 − C24 ≤ 2,

(plus six more).
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1.3 Fine’s Theorem

• Fine’s theorem: The eight CHSH inequalities are also a
sufficient condition for the construction of p(s1, s2, s3, s4)

• CHSH inequalities together with the NS conditions are a
necessary and sufficient condition for Local Realism.

• Similarly for three spin measurements and the Bell inequalities.
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2.1 The Leggett-Garg Inequalities and Macrorealism

The LG inequalities (Leggett-Garg, 1985) were introduced to
investigate sequential measurements in time on a single system.
They are designed to test Macrorealism (MR):

1. Macrorealism per se (MRps): the system is in a definite state
at each moment of time;

2. Non-invasive measurability (NIM): the state can be measured
without disturbing the subsequent dynamics;

3. Induction/Arrow of time (AoT): future measurements do not
affect the present state.

Review: Emary, Lambert and Nori (2014)
Critique: Maroney and Timpson (2014)
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2.2 The Leggett-Garg Inequalities

Figure: Measure a single dichotomic variable Q at pairs of times
t1 < t2 < t3 < t4, to determine the four pairwise probabilities and Cij

• MR implies an underlying probability exists and hence LG:

−2 ≤ C12 + C23 + C34 − C14 ≤ 2,

(plus six more).
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2.3 Non-invasive Measurements

Classical models with invasiveness can explain the values of the
correlation functions (Montina, 2012; Yearsley, 2013).

Ideal negative measurements: the detector is coupled to Q = +1
at the first time and if Q = +1 is not detected we deduce, without
interaction, that Q = −1.
(Knee et al, 2012; Robens et al. 2015; Katiyah et al 2016)

Weak measurements are frequently used. Although the disturbance
can be made very small the effect measured is of the same order of
magnitude.
(Palacios-Laloy et al, 2010)
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2.4 No Signalling in Time (NSIT)

Brukner and Kofler (2013) introduced the NSIT condition:∑
s1

p12(s1, s2) = p2(s2)

i.e. p(s2) is independent of earlier measurements.

• NSIT is an analogue of NS in EPRB.

• NSIT is not satisfied in general by QM. This is the key
difference between EPRB and LG.

• Brukner and Kofler (2013) and Kofler and Clemente (2015)
sought alternative definitions of MR using NSIT only.

• Here, we keep LG and find a way to make NSIT work.
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2.5 QM Measurement Formula

• In QM, the one and two time measurement formulae are

p(s) = Tr (Ps(t)ρ)

p(s1, s2) = Tr (Ps2(t2)Ps1(t1)ρPs1(t1))

where Ps = 1
2(1 + sQ̂).

• QM respects AoT but not NSIT:∑
s1

p(s1, s2) = Tr (Ps2(t2)ρM(t1)) 6= Tr (Ps2(t2)ρ)

where ρM(t1) denotes the measured density operator,

ρM(t1) =
∑
s1

Ps1(t1)ρPs1(t1)
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2.6 Key Issue

• Since [Q̂(t1), Q̂(t2)] 6= 0, the existence of a well-defined
probability at the two-time level in the LG framework is not
guaranteed. I.e., the two-time situation may or may not
possess a macrorealistic description.

• If an MR description exists, there could be a number of
different ways of assigning probabilities to such pairs of
observables.

• Different probability assignments correspond to different
measurement protocols.
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3.1 Checking MR at the Two-Time Level

• Measure 〈Q1〉, 〈Q2〉 and C12 respecting NIM and AoT:

I C12 measured using ideal negative measurement.
I 〈Q2〉 measured in a separate set of runs.

Attempt to construct a probability:

q(s1, s2) =
1

4
(1 + 〈Q1〉s1 + 〈Q2〉s2 + C12s1s2)

• In a MR theory, we must have,

(1 + s1Q(t1))(1 + s2Q(t2)) ≥ 0,

and averaging we obtain q(s1, s2) ≥ 0. This holds if

−1 + |〈Q1〉+ 〈Q2〉| ≤ C12 ≤ 1− |〈Q1〉 − 〈Q2〉|

• If q(s1, s2) < 0, MR fails at the two-time level.
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3.2 A Quantum-mechanical Quasi-probability

• In QM the quasi-probability is

q(s1, s2) = Re Tr (Ps2(t2)Ps1(t1)ρ)

(c.f the discrete Wigner function).

• It satisfies generalized versions of NSIT and AoT:∑
s1

q(s1, s2) = Tr (Ps2(t2)ρ) = p(s2)∑
s2

q(s1, s2) = Tr (Ps1(t1)ρ) = p(s1)

• In typical models q(s1, s2) ≥ 0 for some parameter ranges;
otherwise q(s1, s2) has negative components.

• q(s1, s2) can be measured either by measuring 〈Q1〉, 〈Q2〉 and
C12 non-invasively, or by sequential measurements in which
the first one is weak.
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3.3 Comparison with Sequential Measurements

• The sequential measurement probability p and
quasi-probability q are related by

p(s1, s2) = q(s1, s2) +
1

8
〈[Q̂1, Q̂2]Q̂1〉s2

Same 〈Q1〉 and C12 but different 〈Q2〉.

• NSIT for p(s1, s2) means zero interference.

• NSIT for p(s1, s2) implies q(s1, s2) ≥ 0, but not conversely.

• q(s1, s2) ≥ 0 requires only that the interferences are bounded.

• The switch from p(s1, s2) satisfying NSIT to q(s1, s2) ≥ 0 is a
weakening of classicality conditions.
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3.4 Fine’s Theorem Restored

• q(si , sj) ≥ 0 for i , j = 12, 23, 34, 14 tests MR at the two-time
level. It is satisfied under (reasonably weak) restrictions on
the parameter space.

• These positivity constraints together with the eight LG
inequalities, supply a natural parallel with the EPRB system
and therefore a necessary and sufficient condition for MR.

MR ⇔ MR12 ∧M23 ∧M34 ∧M14 ∧ LG1234

• LG alone misses some violations of MR, namely those in
which LG are satisfied but some q(si , sj) < 0.

• This suggests it would be of interest in current experiments to
examine q(si , sj) in addition to the LG inequalities.
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3.5 Summary So Far

• A formulation of LG paralleling EPRB is possible – for a
non-trivial range of parameters, but not in general.

• It arises from an exploration of MR at the two-time level using
the quasi-probability q(si , sj) which automatically incorporates
generalized versions of NSIT and AoT.

• Experiments should check both LG and q(si , sj) ≥ 0 for
violations of MR.

• Of particular interest is the connection of these results to the
MR conditions of Clemente and Kofler (2015).

For further details see JJH, Phys Rev A93, 022123 (2016)
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4.1 Measurement of C12 with a “Waiting Detector”

• Seek new ways of measuring C12 non-invasively.

• First note that

C12 = 〈Q1Q2〉 = 1− 1

2
〈[Q2 − Q1]2〉

• Assume there exists a velocity v(t) = Q̇(t).

Q2 − Q1 =

∫ t2

t1

dt v(t).

RHS can be measured using a weak coupling λ to a detector
continuous in time.

• Assume that Q(t) changes sign at most once during [t1, t2].
This is reasonable in some models and includes regimes in
which there is substantial LG violation.

JJH, arXiv:1605.09241
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4.2 The Waiting Detector

For illustrative purposes suppose Q = sign(X ).

The effect of interest, p(|1〉), is of order λ2 but the back-action
disturbance is order λ4, so is approximately non-invasive for λ� 1.
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