Leggett Garg Inequalities: a Quasi-probability Approach to No-Signalling in Time

Jonathan Halliwell

Imperial College London

September 28, 2016

Outline

- 1. EPRB experiment and the CHSH inequalities
- 2. The Leggett-Garg situation and its difficulties with no-signalling.
- 3. Improvement using quasi-probabilities
- 4. A non-invasive measurement protocol

General goal: to find a formulation of LG which parallels EPRB as closely as possible. In particular to what extent does there exist an analogue of Fine's theorem?

Main points: A partial parallel is possible and leads to an enriched perspective on macrorealism.

JJH, Phys Rev A93, 022123 (2016); arXiv:1605.09241

1.1 The EPRB Experiment

The EPRB experiment tests Local Realism.

Figure: Measurements are made of $p(s_1, s_3)$, $p(s_1, s_4)$, $p(s_2, s_3)$, $p(s_2, s_4)$, where $s_i = \pm 1$.

1.2 EPRB

• $p(s_1, s_3), p(s_1, s_4), p(s_2, s_3), p(s_2, s_4)$ satisfy no signalling (NS):

$$\sum_{s_1} p(s_1, s_3) = p(s_3) = \sum_{s_2} p(s_2, s_3), \quad \text{etc.}$$

• Seek a probability $p(s_1, s_2, s_3, s_4)$ such that

$$p(s_1, s_3) = \sum_{s_2, s_4} p(s_1, s_2, s_3, s_4), \text{ etc.}$$

If such a probability exists then the correlation functions

$$C_{ij} = \sum_{s_1, s_2, s_3, s_4} s_i s_j \ p(s_1, s_2, s_3, s_4),$$

satisfy the eight CHSH inequalities

$$-2 \le C_{13} + C_{14} + C_{23} - C_{24} \le 2$$

(plus six more).

1.3 Fine's Theorem

- Fine's theorem: The eight CHSH inequalities are also a sufficient condition for the construction of $p(s_1, s_2, s_3, s_4)$
- CHSH inequalities together with the NS conditions are a necessary and sufficient condition for Local Realism.
- Similarly for three spin measurements and the Bell inequalities.

2.1 The Leggett-Garg Inequalities and Macrorealism

The LG inequalities (Leggett-Garg, 1985) were introduced to investigate sequential measurements in time on a single system. They are designed to test Macrorealism (MR):

- Macrorealism per se (MRps): the system is in a definite state at each moment of time;
- 2. Non-invasive measurability (NIM): the state can be measured without disturbing the subsequent dynamics;
- 3. Induction/Arrow of time (AoT): future measurements do not affect the present state.

Review: Emary, Lambert and Nori (2014) Critique: Maroney and Timpson (2014)

2.2 The Leggett-Garg Inequalities

Figure: Measure a single dichotomic variable Q at pairs of times $t_1 < t_2 < t_3 < t_4$, to determine the four pairwise probabilities and C_{ij}

MR implies an underlying probability exists and hence LG:

$$-2 \le C_{12} + C_{23} + C_{34} - C_{14} \le 2,$$

(plus six more).

2.3 Non-invasive Measurements

Classical models with invasiveness can explain the values of the correlation functions (Montina, 2012; Yearsley, 2013).

Ideal negative measurements: the detector is coupled to Q=+1 at the first time and if Q=+1 is *not* detected we deduce, without interaction, that Q=-1.

(Knee et al, 2012; Robens et al. 2015; Katiyah et al 2016)

Weak measurements are frequently used. Although the disturbance can be made very small the effect measured is of the same order of magnitude.

(Palacios-Laloy et al, 2010)

2.4 No Signalling in Time (NSIT)

Brukner and Kofler (2013) introduced the NSIT condition:

$$\sum_{s_1} p_{12}(s_1, s_2) = p_2(s_2)$$

i.e. $p(s_2)$ is independent of earlier measurements.

- NSIT is an analogue of NS in EPRB.
- NSIT is not satisfied in general by QM. This is the key difference between EPRB and LG.
- Brukner and Kofler (2013) and Kofler and Clemente (2015) sought alternative definitions of MR using NSIT only.
- Here, we keep LG and find a way to make NSIT work.

2.5 QM Measurement Formula

• In QM, the one and two time measurement formulae are

$$\begin{array}{rcl} p(s) & = & {\rm Tr}\,(P_s(t)\rho) \\ p(s_1,s_2) & = & {\rm Tr}\,(P_{s_2}(t_2)P_{s_1}(t_1)\rho P_{s_1}(t_1)) \end{array}$$
 where $P_s=\frac{1}{2}(1+s\hat{Q}).$

QM respects AoT but not NSIT:

$$\sum_{s_1} p(s_1, s_2) = \operatorname{Tr} \left(P_{s_2}(t_2) \rho_M(t_1) \right) \neq \operatorname{Tr} \left(P_{s_2}(t_2) \rho \right)$$

where $\rho_M(t_1)$ denotes the measured density operator,

$$\rho_{M}(t_{1}) = \sum_{s_{1}} P_{s_{1}}(t_{1}) \rho P_{s_{1}}(t_{1})$$

2.6 Key Issue

- Since $[\hat{Q}(t_1), \hat{Q}(t_2)] \neq 0$, the existence of a well-defined probability at the two-time level in the LG framework is not guaranteed. I.e., the two-time situation may or may not possess a macrorealistic description.
- If an MR description exists, there could be a number of different ways of assigning probabilities to such pairs of observables.
- Different probability assignments correspond to different measurement protocols.

3.1 Checking MR at the Two-Time Level

- Measure $\langle Q_1 \rangle$, $\langle Q_2 \rangle$ and C_{12} respecting NIM and AoT:
 - $ightharpoonup C_{12}$ measured using ideal negative measurement.
 - $\langle Q_2 \rangle$ measured in a separate set of runs.

Attempt to construct a probability:

$$q(s_1, s_2) = \frac{1}{4} (1 + \langle Q_1 \rangle s_1 + \langle Q_2 \rangle s_2 + C_{12} s_1 s_2)$$

In a MR theory, we must have,

$$(1+s_1Q(t_1))(1+s_2Q(t_2))\geq 0,$$

and averaging we obtain $q(s_1, s_2) \ge 0$. This holds if

$$-1 + |\langle \mathit{Q}_1 \rangle + \langle \mathit{Q}_2 \rangle| \leq \mathit{C}_{12} \leq 1 - |\langle \mathit{Q}_1 \rangle - \langle \mathit{Q}_2 \rangle|$$

• If $q(s_1, s_2) < 0$, MR fails at the two-time level.

3.2 A Quantum-mechanical Quasi-probability

In QM the quasi-probability is

$$q(s_1, s_2) = \text{Re Tr}(P_{s_2}(t_2)P_{s_1}(t_1)\rho)$$

(c.f the discrete Wigner function).

It satisfies generalized versions of NSIT and AoT:

$$\sum_{s_1} q(s_1, s_2) = \operatorname{Tr}(P_{s_2}(t_2)\rho) = p(s_2)$$

$$\sum_{s_2} q(s_1, s_2) = \operatorname{Tr}(P_{s_1}(t_1)\rho) = p(s_1)$$

- In typical models $q(s_1, s_2) \ge 0$ for some parameter ranges; otherwise $q(s_1, s_2)$ has negative components.
- $q(s_1, s_2)$ can be measured either by measuring $\langle Q_1 \rangle$, $\langle Q_2 \rangle$ and C_{12} non-invasively, or by sequential measurements in which the first one is weak.

3.3 Comparison with Sequential Measurements

 The sequential measurement probability p and quasi-probability q are related by

$$p(s_1, s_2) = q(s_1, s_2) + \frac{1}{8} \langle [\hat{Q}_1, \hat{Q}_2] \hat{Q}_1 \rangle s_2$$

Same $\langle Q_1 \rangle$ and C_{12} but different $\langle Q_2 \rangle$.

- NSIT for $p(s_1, s_2)$ means zero interference.
- NSIT for $p(s_1, s_2)$ implies $q(s_1, s_2) \ge 0$, but not conversely.
- $q(s_1, s_2) \ge 0$ requires only that the interferences are bounded.
- The switch from $p(s_1, s_2)$ satisfying NSIT to $q(s_1, s_2) \ge 0$ is a weakening of classicality conditions.

3.4 Fine's Theorem Restored

- $q(s_i, s_j) \ge 0$ for i, j = 12, 23, 34, 14 tests MR at the two-time level. It is satisfied under (reasonably weak) restrictions on the parameter space.
- These positivity constraints together with the eight LG inequalities, supply a natural parallel with the EPRB system and therefore a necessary and sufficient condition for MR.

$$MR \Leftrightarrow MR_{12} \wedge M_{23} \wedge M_{34} \wedge M_{14} \wedge LG_{1234}$$

- LG alone misses some violations of MR, namely those in which LG are satisfied but some $q(s_i, s_j) < 0$.
- This suggests it would be of interest in current experiments to examine $q(s_i, s_i)$ in addition to the LG inequalities.

3.5 Summary So Far

- A formulation of LG paralleling EPRB is possible for a non-trivial range of parameters, but not in general.
- It arises from an exploration of MR at the two-time level using the quasi-probability $q(s_i, s_j)$ which automatically incorporates generalized versions of NSIT and AoT.
- Experiments should check both LG and $q(s_i, s_j) \ge 0$ for violations of MR.
- Of particular interest is the connection of these results to the MR conditions of Clemente and Kofler (2015).

For further details see JJH, Phys Rev A93, 022123 (2016)

4.1 Measurement of C_{12} with a "Waiting Detector"

- Seek new ways of measuring C_{12} non-invasively.
- First note that

$$C_{12} = \langle Q_1 Q_2 \rangle = 1 - \frac{1}{2} \langle [Q_2 - Q_1]^2 \rangle$$

• Assume there exists a velocity $v(t) = \dot{Q}(t)$.

$$Q_2-Q_1=\int_{t_1}^{t_2}dt\ v(t).$$

RHS can be measured using a weak coupling λ to a detector continuous in time.

• Assume that Q(t) changes sign at most once during $[t_1, t_2]$. This is reasonable in some models and includes regimes in which there is substantial LG violation.

JJH, arXiv:1605.09241

4.2 The Waiting Detector

For illustrative purposes suppose Q = sign(X).

The effect of interest, $p(|1\rangle)$, is of order λ^2 but the back-action disturbance is order λ^4 , so is approximately non-invasive for $\lambda \ll 1$.