
An Introduction to Complex Numbers
- A Complex Solution to a Simple Problem
(“If i didn’t exist, it would be necessary invent me.”)

Our Problem. The rules for multiplying real numbers tell us that the product of two negative
numbers is positive, for instance (−1)(−1) = 1. Thus the square of any real number, positive or
negative, is never negative. This fact can be summarised in symbols as follows:

If x ∈ R, then x2 ≥ 0.

In particular, there is no real number x such that x2 = −1, or equivalently, such that

x2 + 1 = 0.

This harmless-looking quadratic equation has no solutions; at least, there are no real numbers
which satisfy it. This was a problem for mathematicians right up to the 17th century, and it is now
our problem in these notes.
Historical Reflections
An Ancient Problem. The mathematicians of classical Greece, who lived over 2000 years ago,
had a similar difficulty with the so-called ‘real’ numbers. They accepted fractions as numbers —
after all they could represent them as lengths constructed with straight-edge and compass — but
they had trouble with a number like

√
2 which they knew was not a fraction1 . They also knew

from Pythagoras’s Theorem that
√

2 was the length of the diagonal of a unit square (a square with
sides of length 1), and so if numbers are to represent length, there has to be a number whose
square is 2, a number which cannot be expressed as a fraction. (Numbers expressible as positive or
negative fractions are called rational numbers, and the set of all rational numbers is denoted by the
special symbol Q. Our proof in the footnote below shows that

√
2 is irrational.)

An Imaginary Problem. We now know how to approximate
√

2 as closely as we please because
there are algorithms which generate its decimal expansion to as many places as we like (pocket
calculators use such an algorithm). In fact, the real numbers were created in logically satisfactory
ways by Cauchy and Dedekind over 100 years ago. We shall say a little more about their
construction later in the course, and you will learn to exploit their properties. The problem
mathematicians had with the square root of minus one was a psychological one; they had a
complex about numbers being ‘real’, they worried a lot about whether they existed. Nowadays we
realise that even the so-called ‘real’ numbers are a human invention, a product of our imagination,
and are no more real than angels dancing on the head of a pin. They make a very good model for
handling length in geometry, but they are only a model, an abstract representation. The sense of
their being real is a trick of the brain and comes from identifying the numbers with the perceived
reality of length. Of course,

√
−1 does not represent a length, but then neither does −1 itself and

yet no one denies the usefulness of negative numbers — this point was made forcefully as long ago
as 1673 by the British mathematician Wallis. In fact, we shall see below that the complex numbers
provide a good model for 2-dimensional space (i. e. the plane). Therefore let us ignore the question
of the existence of

√
−1 and base our judgement on whether the concept is useful. Utility is a more

important property than ‘reality’ (whatever we mean by that).
A Solution, hedged about with doubts. Diophantus (c.275 AD) attempted to solve the
plausible problem of finding a right-angled triangle with perimeter 12 and area 7 and derived a
quadratic equation for the length of a side which had no real roots (so no such triangle exists).
The Italian mathematician Pacioli stated in 1494 that the equation x2 + c = bx cannot be solved

1If
√
2 could be written as a fraction a/b, we could also suppose that a and b are not both even (otherwise we

could cancel a common factor of 2 from a and b). Observe that the square of an odd number is always odd. If the
square of a/b were 2, it would follow that a2 = 2b2, so a could not be odd. But then a, being even, is twice some
whole number c whence a2 = (2c)2 = 4c2, which means that 4c2 = 2b2 and therefore b2 = 2c2. Now by the same
reasoning b, like a, must be even, which we supposed not to be the case. This contradiction means that

√
2 is not a

fraction. (This is an example of ‘proof by contradiction’.)
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unless b2 ≥ 4c. Another Italian mathematician Girolamo Cardano described the equation
x4 + 12 = 6x2 as “impossible”, referring to the roots as “fictitious”. However, he was willing to use
square roots of negative numbers to divide 10 into two parts whose product is 40 thus:
10 = (5 +

√
−15) + (5−

√
−15). Karl Friedrich Gauss was the first to call expressions of this kind

“complex numbers”. Complex numbers gradually established themselves as a valuable extension to
the real number system and although doubts about their existence slowly disappeared, the legacy
of the old terminology ‘real’ and ‘imaginary’ still survives. By the middle of the last century the
theory of complex variables was a thriving and central branch of mathematics. Now let’s go to it!
The Answer to our Problem
Definition.
A complex number is an expression of the form

x+ iy,

where x and y are real numbers and i is an algebraic symbol satisfying i2 = −1. The set of all
complex numbers is denoted by the special symbol C.
Remarks and Notation.
1. When y = 0 we write simply x rather than x+ i0; in particular, 0 + i0 is denoted by 0. The
subset of C consisting of all x+ iy with y = 0 is a copy of the set of real numbers sitting inside C.
If we denote the set of real numbers by the special letter R, we can express this symbolically by
R ⊆ C. (Here the notation ‘⊆’ means ‘is a subset of’.) From this viewpoint, a real number is a
special case of a complex number.
2. One of the structural rules of the complex numbers is that

x+ iy = 0 if and only if x = 0 and y = 0.

(Aside: In the language of Linear Algebra, the complex numbers 1 and i are linearly independent
over R.)
3. Two more structural rules in C are: iy = yi and (−y)i = −(yi). Putting them together, we can
write a complex number like 5 + i(−2) as 5− 2i instead.
4. It is often convenient to use a single letter, such as z, to stand for a typical complex number
x+ iy.
Two Remarkable Facts
I. In C we can (i) add, (ii) subtract, (iii) multiply, and (iv) divide by non-zero complex numbers in
such a way that the familiar rules of arithmetic are satisfied, for example the Distributive Law,
which states that u(v +w) is the same number as uv + uw for all choices of complex numbers u, y,
and w. (A set which admits these four basic algebraic operations is called a field. Thus Q (the
rational numbers), R (the real numbers), and C are all examples of fields.)
II. Every polynomial equation (not just x2 + 1 = 0) now has a root in C, even when the coefficients
of the polynomial are themselves complex numbers. This fact, together with the remainder
theorem, implies that a polynomial of degree n has exactly n roots in C (counting repetitions).
The second remarkable fact is too deep to prove at this stage, but the first is straightforward, as
we now see.
Proof of Remarkable Fact I
Addition and subtraction of complex numbers is easy. Let z = x+ iy and z′ = x′ + iy′, and define
the following operations.
Sum: z + z′ = (x+ iy) + (x′ + iy′) = (x+ x′) + i(y + y′)
Difference: z − z′ = (x+ iy)− (x′ + iy′) = (x− x′) + i(y − y′)
Note that in each case the right-hand side has the form of a real number plus i times another real
number. Thus the sum and difference of two complex numbers is another complex number. We say
that the set C is closed under the operations of addition and subtraction.
Multiplication is not difficult, provided we remember to replace i2 by −1 whenever we can. We will
denote the product of two complex numbers z and z′ by zz′ rather than by z × z′. Juxtaposition
(writing two symbols next to each other) is often used by mathematicians to denote some kind of
product or multiplication. The usual rules for expanding brackets give:
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Product: zz′ = (x+ iy)(x′ + iy′) = xx′ + xiy′ + iyx′ + iyiy′

= xx′ + i(xy′ + yx′) + i2yy′ = (xx′ − yy′) + i(xy′ + yx′)
Since x, x′, y, and y′ are all real numbers, the two numbers (xx′ − yy′) and (xy′ + yx′) are also real.
Thus the product we have just defined (the final expression in the above equations) is again a
complex number. This shows that C is closed under multiplication.
Finally, we want to divide by a non-zero complex number z = x+ iy. To say that z is non-zero
means that at least one of x and y is non-zero. To divide by z is the same as multipying by its
inverse 1/z, and since we already know how to multiply, it will be enough to identify a complex
number w equal to 1/z. Now if w = 1/z, then zw = 1. The secret of finding such a w, is to notice
that if z (= x+ iy) is multiplied by its so-called complex conjugate z̄ = x− iy, the answer is the
positive real number x2 + y2 (why is it positive?). To see this, apply the product rule above with
x′ = x and y′ = −y:

zz̄ = (x+ iy)(x− iy) = (xx− y(−y)) + i(xy + (−y)x) = (x2 + y2) + i0 = x2 + y2.

If we now replace z̄ by

w =

(
1

x2 + y2

)
z̄ =

(
x

x2 + y2

)
− i
(

y

x2 + y2

)
and carry through the same calculation, we obtain zw = 1. This yields the desired inverse 1/z
(also denoted by z−1) of a non-zero complex number z = x+ iy:

Inverse: z−1 =
1

z
=

(
x

x2 + y2

)
− i
(

y

x2 + y2

)
.

This completes our proof that in C we can add, subtract, multiply pairs of complex numbers, and
also divide by non-zero complex numbers, thus showing that C is a field. We mentioned earlier
that, just as the real numbers can be used to represent points on a line, the complex numbers are a
useful model for studying points in the plane.

A Geometrical View of the Complex Numbers
The underlying idea is simple. We identify the complex number z = x+ iy with the point in the
plane whose coordinates are (x, y). We then interpret geometrically the four arithmetical
operations defined above. If P is the point represented by the complex number z = x+ iy, its
coordinates are (x, y), and the distance r of P from the origin O is

√
x2 + y2 by Pythagoras’s

theorem. If the Greek letter θ (theta) denotes the angle between the x-axis and OP (measured
anticlockwise), we have x = r cos θ and y = r sin θ, and therefore

z = r(cos θ + i sin θ), where r =
√
x2 + y2.

Therefore the point with polar coordinates (r, θ) is represented by the complex number
r(cos θ + i sin θ). There are special names given to r and θ in this situation.
Definitions.
(a) The modulus of a complex number z, denoted by |z|, is defined thus:

|z| =
√
x2 + y2.

(b) The argument of a complex number z is the angle θ between the x-axis and OP measured
positively in an anti-clockwise direction. By convention we choose the so-called principal value of
the argument lying in the range 0 ≤ θ < 2π. Thus

arg z = tan−1(y/x) with 0 ≤ arg z < 2π

The sum of two complex numbers has a well-known geometrical meaning. If P and P ′ are points
represented by z = x+ iy and z′ = x′ + iy′, the coordinates of the point represented by the sum
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Figure 1: THE ARGAND DIAGRAM

z + z′ = (x+ x′) + i(y + y′) are (x+ x′, y + y′), and these are the coordinates of the vector sum
−−→
OP +

−−→
OP ′. Hence the sum of two complex numbers represents the vector sum of their points in the

plane. Similarly the difference z − z′ corresponds to the difference of their corresponding vectors.
The sum and difference of two complex numbers can therefore be visualised by means of the
pictures shown in figures 2 and 3.

The product of two complex numbers is best expressed in terms of their polar coordinates.
Theorem. Let z and z′ be complex numbers with moduli r and r′ and arguments θ and θ′

respectively. In other words, suppose that z = r(cos θ + i sin θ) and z′ = r′(cos θ′ + i sin θ′). Then

zz′ = rr′(cos(θ + θ′) + i sin(θ + θ′)). (1)

Hence to calculate the product of two complex numbers, multiply their moduli and add their
arguments. In symbols, this means:

|zz′| = |z||z′| and arg zz′ = arg z + arg z′ (minus 2π when necessary).

Proof Using the product rule and the familiar formulas for sin(A+B) and cos(A+B), we get

(cos θ + i sin θ)(cos θ′ + i sin θ′) = (cos θ cos θ′ − sin θ sin θ′) + i(sin θ cos θ′ + cos θ sin θ′)

= cos(θ + θ′) + i sin(θ + θ′)

Equation 1 now follows, and shows that the product zz′ can be expressed in the form of a complex
number whose modulus is rr′ = |z||z′| and whose argument is θ + θ′, provided we subtract 2π to
obtain the principle value when θ + θ′ falls in the range 2π to 4π.
The rule for the product stated in the above Theorem makes it very easy to describe the inverse.
If we multiply the complex number z corresponding to (r, θ) by the complex number z′

corresponding to (r−1,−θ), we obtain the complex number whose modulus is r × r−1 = 1 and
whose argument is θ + (−θ) = 0, and this is just the number 1 + i0 = 1. In other words, zz′ = 1
and hence z′ = z−1. We have therefore shown that

if z = r(cos θ + i sin θ), then z−1 = r−1(cos θ − i sin θ)
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Figure 2: The sum of two complex numbers
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since sin(−θ) = − sin θ. The above diagram shows the inverse z−1 of the following complex number:

z = 2(cos
(π

3

)
+ i sin

(π
3

)
= 1 + i

√
3

de Moivre’s Theorem
Using the multiplication rule described above repeatedly for complex numbers we can show that
for a complex number z = r(cos θ + i sin θ),

zn = rn(cosnθ + i sinnθ)

This result is known as de Moivre’s Theorem.
For example z2 = r2(cos(θ + θ) + i sin(θ + θ)) and z3 = zz2 = r3(cos(2θ + θ) + i sin(2θ + θ))
= r3(cos 3θ + i sin 3θ) etc.
de Moivre’s Theorem is valid for any integer or rational n.
The exponential form of a complex number
In our geometrical view of complex numbers we see that the combination cos θ + i sin θ involving
the angle θ keeps cropping up. It is convenient and very useful to find a more concise expression
for this combination. Let’s consider differentiating z = cos θ + i sin θ with respect to θ,
dz
dθ = − sin θ + i cos θ and again d2z

dθ2 = − cos θ − i sin θ which is of course −z. Now we will repeat

this process with the complex number z1 = eiθ. dz1
dθ = ieiθ and d2z1

dθ2 = i2eiθ which is −z1. This
suggests that

cos θ + i sin θ ≡ eiθ

(This result can be shown formally by using power series expansions. cos θ can be expressed as a
series

cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

and similarly for sin θ

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

for any real value of θ. (The factorial n! = 1.2.3 · · ·n, e.g. 4! = 1.2.3.4)
The exponential function ex can be expressed for any real x as

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

6



and if we define ez as

ez = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+ · · ·

where z is a complex number, it is easy to show that

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ · · ·

which is equivalent to cos θ + i sin θ when i2 = −1 has been used to tidy up this expression.)
Thus a concise way of writing any complex number z = r(cos θ + i sin θ) is z = reiθ.
The complex conjugate z̄ = re−iθ and if we revisit de Moivre’s Theorem

zn = (reiθ)n = rneinθ = rn(cosnθ + i sinnθ)

The relations

cos θ =
eiθ + e−iθ

2

and

sin θ =
eiθ − e−iθ

2i

are also handy and often used.
Example
Find three different complex numbers which satisfy the equation z3 = 1.
Express z as reiθ and find values of r and θ that satisfy the equation.

(reiθ)3 = 1

becomes
r3e3iθ = 1

Equating real and imaginary parts gives

r3 cos 3θ = 1

r3 sin 3θ = 0

We find r = 1 from squaring and adding the equations and cos 3θ = 1 and sin 3θ = 0. This means
that 3θ = 0, 2π, 4π, · · · and θ = 0, 2π/3, 4π/3, 2π, 2π/3 + 2π, 4π/3 + 2π, · · · . The three complex
numbers which satisfy z3 = 1 are thus

z1 = 1

z2 = cos
2π

3
= i sin

2π

3
= −1

2
+ i

√
3

2

z3 = cos
4π

3
= i sin

4π

3
= −1

2
− i
√

3

2
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Exercises

ATTEMPT THESE QUESTIONS AND HAND IN YOUR ANSWERS TO QUESTIONS 1 TO 8 TO
YOUR PERSONAL TUTOR BY THE END OF THE FIRST WEEK OF TERM.

1. Write the following complex numbers in the form x+ iy, where x and y are real:

(i) (−1− i)(3−+4i); (ii) (2 + i)2 − (2− i)2; (iii) (1 + i)/(1− i); (iv) (9 + 3i)/(6i).

[10 marks]

2. For what real value of a is the equation (1 + 3i)(5− ai) = 50 satisfied?

[10 marks]

3. On the Argand diagram mark the points represented by the following complex numbers:
(i) −4i; (ii) 1− 2i; (iii)(1 + i)3.

[10 marks]

4. Find the modulus and argument of each of the following complex numbers:
(i)
√

3− i; (ii)−6 + 8i; (iii) −2i.

[10 marks]

5. Mark the following points on the Argand diagram and verify the product rule given in the
theorem on page 4: (a) 3 + 2i; (b) 2 + i; (c) their product.

[10 marks]

6. Show that the following four points form the vertices of a square in the Argand diagram:
4 + 3i, −3 + 4i, −4− 3i, 3− 4i.

[10 marks]

7. Work out (
1√
2

+ i.
1√
2

)4

,

in other words, express this fourth power in the standard form x+ iy.
Find four different complex numbers z satisfying z4 + 1 = 0.

[20 marks]

8 Find two complex numbers which satisfy the equation (3+2i)
z2 = 1 and mark their positions on the

Argand diagram.

[20 marks]

∗(Optional) Give a sensible meaning to the symbol ii, that is to say, i raised to the power of i.
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