Magk’s Python-Based Pipeline
Beta CookBook

Penélope Longa-Peifla



Abstract

I've been trying to understand the Carnegy’s Python based pipeline by Dan
Kelson for several months now. This is a gathering of the things I've figure
out about it so I don’t forget them / somebody else can use it after I'm gone!
(Without the painful process of trial and error that leads to work with this
undocumented pipeline)



Chapter 1

Setup

To setup the carnegie pipeline from an astronomy machine run:

source /storage/astro2/phsgan/Software/CarPy/Setup.csh
‘carpy’

A list of the carnegie commands can be found in:
/storage/astro2/phsgan/Software/CarPy/dist/bin_oldnumeric/

The pipeline is not designed to make time resolved spectroscopy, so it aver-
age all the spectra with the same object name together. To prevent this, the
easier way is to change the “OBJECT” parameter in the .fits files by adding
a number. This numbers shoud be 2 figures numbers. For example: Having 3
observations for the star Vega, change the parameter “OBJECT” by: vega_00,
vega 01, vega_02. Why using 2 figures? it doesn’t matter if there are less than
10 observations, but if there is more than 10, then the pipeline will add to the
ones with one figure all the others that start with that number (It will add
to vega_l outcome vega_10, vega_11, vega_12, etc...). So if the first couple of
spectra have funny observation times, this step went wrong.

Using the recently installed version of the pipeline will crop some of the or-
der away. The older version is already cracked, but if it is reinstalled there are
some changes to be done inside the code for it to extract all the orders. This is
under my own risk, I'm sure that Dan Kelson should have good reasons for not
to want all the orders, but I do want them all. The change to do in the code is:

Inside
/storage/astro2/phsgan/Software/CarPy/dist/bin_oldnumeric/mageDistortion
change:

‘Nw = rdarg(argv,"-Nw",int,13)"

by

‘Nw = rdarg(argv,"-Nw",int,15)’

That will consider all the 15 orders for extraction.
Now, when is making the object appertures also crops some orders it doesn’t



like. It follows a logic that I still can’t crack, but it could be any order that gets
cropped away. To play safe and get sure all the orders you extract are OK, then
leave things like they are. If you still want to force the pipeline to give you all
the orders, it can be worked out as follows:

Inside
/storage/astro2/phsgan/Software/CarPy/dist/bin_oldnumeric/mkobjectaps
Look for “What to keep...”, then change the loghical arguments for:

good = logical_or(between(relpos-relposO,-5*relposl,
+b*relposl),less(abs(relpos-relpos0),0.2))

good2d = [True,True,True,True,True,True,True,True,True,True,True,True,True,True,True]
print good2d

goodid = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ]

print goodild

really = equal(goodld,len(inputs))

print really

With this the pipeline will get all 15 orders no mater what.



Chapter 2

Reduction

There is some documentation about this in http://code.obs.carnegiescience.edu/mage-pipeline
but I'm trying to put all togheter here:

2.1 Setting up the MagE Database File

The first command will create a text file named “your_dirMAGE.db” inside the
directory in which you call it. My personal advice is to make a new folder
for each reduction since if there is more than one night, there are going to be
different calibration files, and the pipeline will call them all the same and it can
get messy.

This is known as the “database”. It could be helpfull to let you know what
is in your reduction directory, since it extracts the information from the .fits
headers and put it into one place.

To generate it just type:

magedb -d ¢ ‘your path’’

The path can be absolute or a relative path to the directory in which the .fits
files are.

Example: If T keep my observation .fits files in a file call “night1” then I can
make a new directory outside night1 for the reductions:

mkdir redu nightl
cd redunightl
magedb -d ../nightl

will generate a file called night IMAGE.db inside the redu_nightl directory,
which will be your database file, That is what the pipeline is going to use to
reduce.

This file other than the .fits headers information, also has the absolute path
to all of your .fits files. I found this usefull when changing the headers names,
just copy the absolute paths of the ones I wanted to change into a list and run
it inside a script to number their “OBJECT” header.



ALWAYS look inside the database file before reducing. All the information
for the reduction is saved there, so if there are some flats with different obser-
vation times or some targets that are not wanted, these should be removed out
of the database file before the next step.

2.2 Generate pipelines

Before generating the pipelines it is necessary to change a bit the headers of the
calibration objects and call them something remarkable. In principle one could
call the red flats Fred and the blue ones Barney, but it is better to call them
something more straightforward. Why changing their names? because lets say
the blue flats and the redflats are both called flats, then the pipeline don’t know
which is which. My default way of calling all the non science targets are:

red flat DOMEFLAT
blue flat Xe flat
slit trace
lamp thar

Table 2.1: My default nomenclature for calibration headers.

This are names that need to be rememberd since are be going to be used in
the next step.

Also a warning: “blue flats” and “slits” are the same thing, so the person
who observe will ussually call them the same, making this renaming step really
important.

Next, the command:

magesetup -db (and your .db file here)

with nothing else, should print out a list of the objects that are going to be
reduced. This is very important to check, if you see here any of the names
of the calibration targets, then something is wrong and should re-name them
again. Alternatively, just carry on to the next step and deal with it later (I'll
tell how in a minute).

Now, for magesetup do actually generate the pipelines, it is necesary to tell
it to. There are several ways of telling it to, but the fastest is just to tell it to
generate all the scienca pipelines at once:

magesetup -db night1MAGE.db -blueflatkey Xe -redflatkey DOMEFLAT -slitfnkey
trace -lampkey thar -all -mk makefile

Now the magesetup is being told to do “all” the pipelines, meaning, all the
pipelines for the targets that has listed previously (and that it will list again
while it’s making them). Notice that the words after thw minus (-) sign are the
program setups and the ones after those are the ones that were defined manu-
ally in the headers. This means that you could call your makefile anything you
wanted as well. To make an specific target instead of -all write ~-0BJECTkey
‘‘name of the target here’’. This should generate a pipeline just for the



target that ou want. There will be new directories in the reduction directory
now, one for each science target and also blueflat, redflat, flat, slit and lamp.
Also one called Final products, but that will be empty by now. There will also
be some fits files, but are just images by now so no point trying to open them
yet.

In this point, if there is a directory called “DOMEFLAT” because you saw
it in the setup list and didn’t dealt with it the directory should be removed
(and you were lucky). If you're onlucky, then after the magesetup command
the list of targets just passed really fast or got a message saying something like
“problem with your red flats?”. This means that when calling the red flats by
-redflatkey DOMEFLAT you call it something wrong or slightly different to the
one on the header. It says in the web page that this is not case sensitive, but
in fact it is, if you don’t call the setup command with the exact same key word
that appears in the headers the pipeline generation fails. So basically if in the
header says Domeflat and in the setup DOMEFLAT it will not be the same, so
beware.

2.3 Running the pipelines

In theory, if you called your makefile “makefile” just typing “make” inside the
reduction directory should magically do everything. I said in theory (or maybe
also in Dan Kelson’s computer, but not here). In reality that almost never
occur. First if in the setup step the makefile was called something else, then to
actually run it it is necesary to type: make ‘‘somethingelse’’.

While the pipeline is running from the reduction directory it shows in the
shell a line with the name of the directory that is making and when it is done,
writes next to it the name of the outfile for that directory. The “directory.outl”
(or .out2, .out3 depending on how many times the reduction fails), will have all
the outcomes of the pipeline written inside, every step and every command and
of course, the errors.

By experience, the pipeline always breaks while doing the lamp, so if you
just type make and trust everything is been done, probably can spend hours
waiting and staring at the shell while the list of directories and .out files grows.
Hint, when it is broken from the begining, the science targets come out very
quickly.

What I do is to go inside the “lamp” directory first of all (cd lamp) and
then type make. Doing “make” inside the directory will show you the output of
the .out file in the shell. Handycap: there will not be a .out file. Still is always
better ro do it inside the “lamp” directory because it can be seen inmediatly
when it breakes and type “make” again. The average “lamp” reduction breaking
is 3 times, so don’t panic if it keeps crushing.

Then you could potentially go out to the reduction directory and make from
there and everything should be alright. To be extra sure, I do go inside every
calibration director and make inside. There is a proper order to do so: lamps,
red/blueflat, flat, slit. Now finally is very difficult that the science targets go
wrong after all the calibrations are OK, so making inside the reduction directory
should work.



2.4 Outcome and How to Deal with It

The outcome from the pipeline will be in a directory named “Final-Products”.
These will be multi.fits files, multidimensional .fits files. The 5 dimensions are:
BANDID1 ’sky spectrum’

BANDID2 = ’object spectrum’

BANDID3 = ’noise spectrum’
BANDID4 = ’signal-to-noise spectrum’
BANDIDS = ’lamp spectrum’

So obviously, we can’t just easily open these whith anything... but luckly

Danny Steeghs has made a python script that extract the dimension wanted. It’
called “extract_multispec.py” and by default extracts the object spectrum into
an asci file plus a .head file (with the headers to read in “molly”). If you want
another dimension, you need to change the number in square braquets in line
66 inside Danny’s script, but be aware that is done with python so instead of
1-2-3-4-5 are 0-1-2-3-4 BANDIDs. To make my life easier, I just made another
script that calls Danny’s extract_multispec and give me inmediatly the molly
files. It’s named “Mage2molly.py” and it’s found in
/storage/astro2/phrkaq/scripts/python_scripts.
It needs the name of the object without the multi or the number and then to
tell it from wich number it starts and how many of the object spectra are. It
doesn’t breake if one gives it wrong numbers, but it slows it down. I basically
did it that way so if in the first step one just copy the complete list of objects
and add it numbers or numbered object by object works anyhow. (Sounds quite
confusing, but just give it a go and it’s easy to see how it works.)



