Constraints on Circumbinary Planet Orbits from Kepler Single Transit Events

David Brown (Warwick)

UK Exoplanet Community Meeting 30th March 2015

Aims

- Search for plausible transit paths for circumbinary planets.
- Constrain range of orbital parameters as strongly as possible.
- Model viable transit paths given input parameters for:
 - Binary stars
 - Transit

Input Parameters

- Period and separation of the binary
- Stellar radii
- Phase of the primary star at t₀
- Transit duration
- Transit depth
- Minimum orbital period
- Maximum orbital period
- Number of acceptable paths to find

Start with definition of binary star parameters.

• Calculate stellar positions around orbit.

• Find maximum distance from centre-of-mass.

- Find maximum distance from centre-of-mass.
 - This defines the viable 'binary circle'.

Variables: Orbital Period

• Period defines orbital velocity, and thus transit duration.

Procedure

- Sample distributions of:
 - inclination [uniform in cos(i_{orb})]
 - Ω [uniform]
 - period [uniform]
 - transit probability [uniform in range 0-1]

Procedure

- Initial cut based on transit probability curve, normalised to 1 at minimum search period.
 - If P > P_{tr}(P_{orb}), reject sample.
- Does path cross the 'binary circle'?
 - If **yes**, does path intersect *primary*?
 - If yes, does duration match requirement?
 - If **yes**, are there other transits within five transit widths either side?
 - If no, path is GOOD!

Procedure

Testing: Sun-Sun binary

- Input parameters:
 - $P_{binary} = 1.0 d$
 - phase₀ = 0
 - $T_{dur} = 5.0 \text{ hr}$
 - depth = 1.0%
 - $P_{orb, min} = 5 \times P_{binary}$
 - $P_{orb, max} = 1000 \times P_{binary}$

- With a sample of 100 accepted paths:
 - $P_{orb} = 22.7 \pm 28.3 d$
 - $i_{orb} = 0.35^{\circ} \pm 0.87 (89.65^{\circ} \pm 0.87)$
 - $\Omega = 40.3^{\circ} \pm 130.1$

Testing: future work

- Account for planetary radius small effect, but could be important for duration matching.
- Transits of secondary star?
 - As alternative source of event.
 - Include in check for additional transit events.
- Test with real systems

- Improve speed and efficiency.
 - Currently 1:30,000-4,000,000 for accepted:rejected steps!

Conclusions

- We are developing tools to constrain orbital parameters for circumbinary planets based on single transit events.
 - Model the transit paths as $f(P_{orb}, i_{orb}, \Omega)$
- Preliminary results show that constraints are loose, and will vary strongly with the binary parameters.
- Provides useful information for studies of orbital precession.