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1 Introduction

A continuous wavelet is a well-known fundamental tool that allows to filter data-sets such as to
enhance localised features of a given shape (or periodicity) for a given scale, whilst diminishing
features with scales far removed.

The module contains two Continuous Wavelet Transform (CWT) functions, a one-dimensional
CWT wavelet 1d and a two-dimensional CWT wavelet 2d. Each has associated mother
wavelet functions. Additionally, wavelet 1d has a plot function. There are two demo functions
added to see the CWTs in action.

1.1 Prerequisites

This module has been designed for Python 2.7 and uses external standard Python modules:

• numpy

• scipy

• matplotlib

1.2 Using this module in publications

When using this module is published work, please cite the following papers: For the 1d CWT:

• Verwichte, E., Nakariakov, V. M., Ofman, L., & Deluca, E. E. 2004, Sol. Phys., 223, 77

• Torrence, C. & Compo, G. P.: 1998, Bull. Amer. Meteor. Soc. 79, 61.

For the 2d CWT:

• White, R. S., Verwichte, E., & Foullon, C. 2012, AA, 545, A129

• Witkin, A. P. 1983, in Proc. Int. Joint Conf. Artifcial Intell., IJCAI’83, San Francisco, CA,
USA, 1019

Also, please add to the Acknowledgments:
The wavelet transform has been performed using the Python wavelet module by Erwin Verwichte
(University of Warwick) and was supported by a UK STFC grant ST/L006324/1.
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2 Theory of the Continuous Wavelet Transform

2.1 Basics of a 2d wavelet

I will focus solely on the two-dimensional continuous wavelet transform as its use is much less
common than the 1d wavelet. I refer the reader to the landmark paper by Torrence & Compo for
the the 1d CWT.

The two-dimensional, continuous wavelet transform of an image I(~r) is defined as:

CWT (I)(~b, a, θ) =
1

an

+∞
¨

−∞

I(~r) ψ

(

1

a
R−θ(~r −~b)

)

d~r . (1)

It is a linear transformation of I where the function ψ(~r) is called the mother wavelet. It has the
property that it is localised both in space and in its reciprocal space. Furthermore, the wavelet
needs to fulfill an admissability condition:

ˆ | ψ̂(~k) |2

| ~k |2
d~k <∞ , (2)

where ψ̂ is the Fourier transform of ψ and ~k is the reciprocal vector to the spatial coordinate vector
~r. From this condition, it follows, when ψ is regular enough, that the wavelet has zero mean:

+∞
¨

−∞

ψ(~r)d~r = 0 . (3)

The following transformation are performed on the mother wavelet so that any signal can be
represented as a linear combination of these wavelets: translation by a displacement ~b, rotation
over an angle θ by the rotation matrix R−θ and a dilation by a scaling factor a > 0. The value of
n in the factor a−n in Equation (1) depends of the chosen norm as n = 2/norm (e.g. for L1-norm,
n=2).

2.2 Mexican-hat wavelet

In this paper the Mexican hat mother wavelet is chosen. It is proportional to the Laplacian of a
Gaussian function:

ψ(~r) = −~∇2

(

e−
|~r|2

2

)

=
(

2− | ~r |2
)

e−
|~r|2

2 . (4)

For the rest of the paper the continuous wavelet transform using the Mexican Hat wavelet is
abbreviated by CWT. The Mexican hat wavelet is isentropic so that the dependency of the transform
upon angle θ is superfluous. A wavelet transformation, using this motherwavelet, detects ridges
(where ~∇I = 0 and | ~∇2I | is large) in an image. It is easily seen by integrating Equation (1) by
parts

CWT (I)(~b, a) = − 1

an−2

+∞
¨

−∞

I(~r) ~∇2

(

e−
|~r−~b|2

2a2

)

d~r

= − 1

an−2

+∞
¨

−∞

~∇2I(~r) e−
|~r−~b|2

2a2 d~r , (5)
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Figure 1: Plot of the maximum in wavelet-power of a Gaussian signal of width σ=1, as a function
of scale a for three choices of norm.

that the transform in fact corresponds to a Gaussian blurring of the Laplacian of the image signal.
This leaves intensity ridges in the image more clearly visible. As a becomes smaller and smaller,
the function exp(−(| ~r−~b |2)/(2a2))/2π tends to the delta function δ(~r−~b), pointing out to those
points in the image where | ~∇2I | is large. This makes CWT is particularly suited for detecting
discontinuities in an image. The bulk of the contribution to the integral in the CWT at point ~b,
comes from a circular area of radius 3-4 a around ~b. Equation (5) also showes that the CWT is
insensitive to signals, which are constant or linear, within a circle of radius 3-4 a of a particular
point, i.e. CWT (Axy+Bx+Cy+D) = 0. Since the CWT is employed to enhance features of an
image of interest at scale a, those contribution to the image signal that becomes negligable in the
CWT can be denoted as the background intensity, I0(a) for that particular scale.

Let us examine the transformation of a Gaussian signal G(~r) = A exp(−(~r − ~c)/(2σ2)), i.e.

CWT (G)(~b, a) =
1

an

+∞
¨

−∞

A e−
|~r−~c|2

2σ2 ψ

(

~r −~b
a

)

d~r . (6)

To solve this transform we introduce the following quantities:

X =
x− cx√

2 a
, Y =

y − cy√
2 a

, X0 =
bx − cx√

2 a
, Y0 =

by − cy√
2 a

, ǫ =
a

σ
. (7)

Then,

| ~r − ~c |2
2σ2

= ǫ2
(

X2 + Y 2
)

,
| ~r −~b |2

2a2
= X2 + Y 2 − 2X0X − 2Y0Y +X2

0 + Y 2
0 . (8)

If we consider the contributions in the exponentials, note that for X-dependency we have

(1 + ǫ2)X2 − 2X0X =

(

√

1 + ǫ2X − X0√
1 + ǫ2

)2

− X2
0

1 + ǫ2
. (9)
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It thus makes sense to change to new variables:

ξ =
√

1 + ǫ2X − X0√
1 + ǫ2

, ψ =
√

1 + ǫ2Y − Y0√
1 + ǫ2

. (10)

Then for X (equivalently for Y ):

X =
ξ√

1 + ǫ2
+

1

1 + ǫ2
X0 , X−X0 =

ξ√
1 + ǫ2

− ǫ2

1 + ǫ2
X0 , ǫ

2X2+(X−X0)
2 = ξ2+

ǫ2

1 + ǫ2
X2

0 .

(11)
Also,

2− | ~r −~b |2
a2

= 2− 2(X −X0)
2 − 2(Y − Y0)

2

= 2− 2

(

ξ√
1 + ǫ2

− ǫ2

1 + ǫ2
X0

)2

− 2

(

ψ√
1 + ǫ2

− ǫ2

1 + ǫ2
Y0

)2

= 2− 2

(

ǫ2

1 + ǫ2

)2
(

X2
0 + Y 2

0

)

+ 4
ǫ4

(1 + ǫ2)3/2
(X0ξ + Y0ψ)−

2

1 + ǫ2
(

ξ2 + ψ2
)

.(12)

Finally, with

dxdy = 2a2dXdY =
2a2

1 + ǫ2
dξdψ , (13)

the transform becomes:

CWT (G)(~b, a) =
2A e

−

ǫ
2(X2

0
+Y

2
0 )

1+ǫ2

an−2 (1 + ǫ2)

+∞
¨

−∞

[

2− 2

(

ǫ2

1 + ǫ2

)2
(

X2
0 + Y 2

0

)

+ 4
ǫ4

(1 + ǫ2)3/2
(X0ξ + Y0ψ)

− 2

1 + ǫ2
(

ξ2 + ψ2
)

]

e−ξ
2

e−ψ
2

dξ dψ . (14)

We make use of the definite integrals

+∞
ˆ

−∞

e−αt
2

dt =

√

π

α
,

+∞
ˆ

−∞

te−αt
2

dt = 0 ,

+∞
ˆ

−∞

t2e−αt
2

dt = − ∂

∂α

+∞
ˆ

−∞

e−αt
2

dt =
1

2α

√

π

α
. (15)

Hence Eq. (14) becomes

CWT (G)(~b, a) =
2πA e

−

ǫ
2(X2

0
+Y

2
0 )

1+ǫ2

an−2 (1 + ǫ2)

[

2− 2

(

ǫ2

1 + ǫ2

)2
(

X2
0 + Y 2

0

)

− 2

1 + ǫ2

]

=
2πA ǫ2 e

−

ǫ
2(X2

0
+Y

2
0 )

1+ǫ2

an−2 (1 + ǫ2)2

[

2− 2
ǫ2

1 + ǫ2
(

X2
0 + Y 2

0

)

]

=
2πA

an−2

ǫ2

(1 + ǫ2)2

[

2− 2
ǫ2

1 + ǫ2
(

X2
0 + Y 2

0

)

]

e
−

ǫ
2(X2

0
+Y

2
0 )

1+ǫ2

=
2πA

an−2

(

a
σ

)2

(

1 +
(

a
σ

)2
)2

ψ

(

~b− ~c√
a2 + σ2

)

, (16)
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where we used:
ǫ2

1 + ǫ2
(

X2
0 + Y 2

0

)

=
a2

a2 + σ2

(

| ~b− ~c |2
2a2

)

=
| ~b− ~c |2
2(a2 + σ2)

. (17)

For a fixed scale, the maximum value of CWT (G) is reached at ~b = ~c. Let us consider the
dependency of CWT (G) as a function of scale a, at that position. This is illustrated in Figure 1.
It is clear that for n > 0 (excluding L∞-norm), CWT (G)(~c, a) reaches a maximum at:

am =

√

4

n
− 1σ , CWT (G)(~c, am) =

πA

4
n2
(

4

n
− 1

)2−
n

2

(18)

For L1-norm, n = 2, this means that the wavelet power has a local maximum, of value πA, at the
scale of the signal, i.e. am = σ. For L2-norm, n = 1, the wavelet power has a local maximum of
value (9/4

√

(3))πA at the scale am =
√
3σ. For L∞-norm, n = 0, there is no local maximum in

wavelet power.

2.3 Image noise

The noise in the EIT images is due to two, assumed independent, contributions: photon noise and
CCD read-out noise. The photon noise follows from Poisson statistics, for which the average value
µ and variance σ2pn of the photon density distribution are equal to the expectancy value, which
in this case is equal to the part of the photon flux, Φint, interacting with the CCD camera. We
express Φint and σpn, originally in units of number of photons, into Digital Number (DN) units
by multiplying by a factor Nph/d, where Nph is the gain of electrons per photon, equal to 12398 /
(3.65 λ) and d is the digitization constant, equal to 16.7 eV per DN for the EIT instrument (Dere
et al., 2000). λ is the wavelength bandpass, expressed in Angstroms. The average and variance of
the CCD read-out noise, σCCD, are assumed constant. The latter is, for nominal EIT observation
conditions, equal to 2.7 DN2. The noise variance in the EIT images is written as:

σ2noise(~r) =
Nph

d
I(~r) + σ2CCD =

203.4

λ(A)
I(~r) + 2.7 , (19)

where I corresponds to the image intensity, which is the photon flux in units of DN. The EIT
instrument has four possible wavelength bandpasses: 171A, 195A, 284A and 304A. For these four
values, the ratio 203.4/λ(A) is equal to 1.19, 1.04, 0.72 and 0.67 respectively.

How does the noise look like in a wavelet transformation? Consider N(~r) to be a function
describing the noise contribution to the image intensity. The CWT of N may be approximated by
two, essentially finite, sums:

CWT (N) ≈
∑

i,j

ψ̃i,j Ni,j∆Ai,j , (20)

with ψ̃i,j = ψ(| ~ri,j −~bi,j | /a)/an and Ni,j = N(~ri,j), and where ∆Ai,j = ∆xi,j∆yi,j is the interval
of area, which is chosen small enough as to have the sum approximate the integral. We consider the
photon noise. In this case each Ni,j∆Ai,j has a Poisson distribution with an average and variance,
both equal to Nph/d I0(a)i,j∆Ai,j , where I0(a) is the background intensity at scale a. The CWT
of the average, < N >, and the variance, σpn, of the noise fluctuations due to photon noise, are
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Figure 2: Size of detected source as a function of scale a and the ratio of the signal-to-noise in the
original image and the signal-to-noise threshold, SNR/ K. σ = 1.

approximately equal to:

< NCWT > =
∑

i,j

ψ̃i,j < Ni,j∆Ai,j >

≈ NphI0(a)

d

1

an

ˆ +∞

−∞

ψ (~r) d~r = 0 (21)

σ2CWT,pn =
∑

i,j

ψ̃2
i,j σ

2
pn,i,j∆Ai,j

≈ NphI0(a)

d

1

a2n

ˆ +∞

−∞

ψ2 (~r) d~r =
2π

a2n−2
σ2pn (22)

We made use of the fact that the background intensity I0 is approximately constant in a circle
of radius 3-4 a around the point we measure. For the case of the CCD-readout noise, we find
CWT (< N >) = 0 and CWT (σ2CCD) = 2πσ2CCD/a

2n−2. Therefore, we find that the noise variance
in the CWT is approximately equal to

σ2CWT,noise =
2π

a2n−2
σ2noise . (23)

For the detection of a feature in the image, we impose the rule that its signal-to-noise ratio
SNR = A/σnoise in the original image exceeds a certain value, K, which is often set equal to 3-5,
so that the chance that the signal is not due to noise is highly significant. Let us consider the
signal-to-noise ratio of the CWT of the Gaussian signal, calculated in Expression (16). Its is equal
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to

SNRCWT =
CWT (G)

σCWT,noise
= SNR

√
2πσ

(

a
σ

)3

(

1 +
(

a
σ

)2
)2

ψ

(

~b− ~c√
a2 + σ2

)

. (24)

The CWT signal-to-noise ratio SNRCWT is proportional to SNR, but the strength of this propor-
tionality is goverened by the scale a of the CWT and the width σ of the Gaussian signal. The
expression for SNRCWT is independent of the chosen norm. A feature is detectable if the SNRCWT

exceeds K in any point of the image. This occurs first where Expression (24) is maximal, i.e. ~b = ~c
and ψ(0) = 2. Thus we can say that a feature is detected if

SNR

K
>

SNRc(a, σ)

K
=

1

2
√
2πσ

(

1 +
(

a
σ

)2
)2

(

a
σ

)3
. (25)

We can say several things about Expression (25):
1) Detection depends on the size of the feature and the ratio between the scale and this width.
2) SNRc becomes infinite at a=0 since it is impossible to detect a non-existing feature.
3) At a =

√
3σ, SNRc has a local minimum of value SNRc(

√
3σ)/K = 8/(3

√
6πσ).

4) For a≫ σ, SNRc is well described by

SNRc
K

=
1

2
√
2πσ

(a

σ

)

, (26)

which can be seen as a function of σ to be the minimum detection curve.

3 1d CWT function

The main function to create a one-dimensional CWT is wavelet 1d:
Input:

• x: one-dimensional float array of size N0 of the independent variable, e.g. time. If x is not
equally spaced, the time-series will be resampled to the minimum step-size present in x.

• y: one-dimensional float array of size N0 of the dependent variable, i.e. the signal time series.

• a0 (optional): one-dimensional float array of size M0,0 of the first scale-space parameters.
If not given, a set of scales is automatically generated. There is control over the resolution
through the keyword resolv.

• a1 (optional): one-dimensional float array of size M0,1 of the second scale-space parameters.
This will be automatically passed on to the mother wavelet function.

• ...

Keywords:

• fit: scalar integer, if given will subtract a polynomial of order fit from y (default = average
subtracted).

• kk: float array of reciprocal space variable as input (default = None)

• lag1: float scalar lag1 parameter (default = 0)
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• missing: Boolean stating whether data is missing (default = False)

• mother: string of name of mother wavelet: ’morlet’ (default = ’morlet’)

• regular: Boolean stating whether the intervals in x are regular (default = True) if not
regular the data will be interpolated onto a regular grid

• resolv: Scalar of resolution of scales (default = 1.0)

• siglvl: Scalar of significance level between 0 and 1 (default = 0.99)

• variance: Scalar of variance to use in determining significance (default = variance(y)) Note
that if fit is given, the default variance is that of the residual y where the polynomial has
been substracted

Output:

C: object containing the following attributes

• C.x0: copy of original one-dimensional float array of size N0 of independent variable x.

• C.y0: copy of original one-dimensional float array of size N0 of dependent variable y.

• C.x: one-dimensional float array of size N of independent variable. Can be of different size
than C.x0, especially when x0 is not equally-spaced and required resampling.

• C.dxx: float scalar of step-size of C.x

• C.cwt: the complex at least two-dimensional float array of dimension N ×M0 ×M1 × . . . of
the CWT.

• C.cwt real: real part of CWT.

• C.cwt imag: imaginary part of CWT.

• C.cwt abs: absolute part of CWT

• C.scale: array of scales (first scale-space parameter) in units of indices, either bases on
input or Choice of scales s = s02

jdj with j=0..M0-1, M0 = log2(Ndx/s0)/dj. dj is chosen
such that σ of reciprocal wavelet is larger than scale sampling difference.

• C.period: floating array size M0 of scales (first scale-space parameter) in units of indepen-
dent variable. i.e.

• C.coi: float array of size N containing the scale for the cone of influence

• C.signif: array of size M0 of the significance value as a function of scale

• C.siglvl: scalar float of significance level, between 0 and 1.

• C.array missing: int array of size N indicating if data is missing (value=0) or not
(value=1).

• C.fft theor: array of size M0 of statistics for significance calculation.

• C.time max: float array of size of C.count max of x-values of maxima in CWT.
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• C.period max: float array of size C.count max of y-values of maxima in CWT

• C.count max: number of maxima present

• C.mother: string name of mother wavelet used, e.g. ’morlet’

• C.fit: scalar integer of order of polynomial fit (if set).

• C.yfit: float array of size N of polynomial fit.

An example usage syntax is:

C = wavelet 1d(t,y,mother=’morlet’,siglvl=0.99)

which does the same as

C = wavelet 1d(t,y)

The mother wavelet function is given as a function with the name construct wvl func +

mother + 1, e.g. wvl func morlet1. Here, only one mother wavelet is given but others are
possible. The function calculates the mother wavelet in reciprocal (Fourier) space as a function of
k. The function wvl func morlet1 represents the one-dimensional Morlet mother wavelet. The
function in principle is never needed to be called separately. It has the following structure:
Input:

• kx: float array of size Nk of reciprocal space array

• a0: scalar float of first scale parameter

• a1 (optional): scalar float of second scale parameter

• ...

Keywords:

• norm: Scalar integer of norm used (default = 1)

• epsilon: Scalar float controlling width of wavelet (default = 1.)

• k0: Scalar float controlling number of oscillations underneath envelope (default = 5.6)

Output:

• wavelet: FFT of mother wavelet for given scale as a function of kx

• period: Scalar of period associated with scale a0

• coi: float array containing the scale for the cone of influence

• dofmin: scalar integer of degree of freedom

In the module a plot function is included to easily visualise the result called plot1, with syntax:
Input:

• object as output from wavelet 1d.

Keywords:
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• CWT:

– real: Boolean, plot real part of CWT (default = False)

– imaginary: Boolean, plot imaginary part of CWT (default = False)

– absolute: Boolean, plot absolute part of CWT (default = True)

– zrange: 2-element array of min-max of CWT to plot (default = [min,max])

• Scales:

– freq: Boolean, plot versus frequency = 2 π / C.scale (default = False)

– yrange: 2-element array of scale-range (default = [min,max])

– ylog: Boolean, plot logarithmic scale (defaull = True)

• Colors:

– theme: theme of color scheme: ’blue’,’red’,’’ (default = ’’)

– cmap: colormap used for x-scale plot (default given by theme)

– color: color of lines (default given by theme)

– coi color: color of COI hatches (default givem by theme)

– background color: color of background in time series and power spectrum plots
(default given by theme)

• Titles:

– title: title of x-scale plot (default = ’CWT’)

– title scale: title of y-label in x-scale plot (default = ’period’ or ’frequency’)

– title time: title of x-label of time series plot (default = ’time’)

– title signal: title of y-label of time series plot (default = ’signal’)

The demo demo1 shows an example of the usage of wavelet1dandplot1 :
import numpy as np

import random

nx = 128

t = np.arange(nx)/(nx-1.) * 10.

w1 = 2.*np.pi/1.9

w2 = 0.5*w1 + t/t.max()*(2.5*w1)

y = np.cos(w1*t) + 2*np.cos(w2*t)

r = np.zeros(nx)

for i in np.arange(nx): r[i] = random.random() * 1.5

y = y + r

C = wavelet_1d(t,y,mother=’morlet’,siglvl=0.9)

fig = plt.figure(num=0,figsize=[8,6],dpi=100,facecolor=’White’,edgecolor=’White’)

plot1(C,freq=False,theme=’Blue’)

the result of which is shown in Fig. 3, and can be reproduced by running the function demo1.
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Figure 3: Example of the Continuous Wavelet Transform of a time series using a Morlet wavelet.

4 2d CWT function

Similarly to the 1d version, the 2d CWT function is called wavelet 2d:
Input:

• img: two-dimensional float array of image of dimensions Nx ×Ny.

• scale1: scalar float or one-dimensional float array of size M0 of parameter values related to
first parameter taken by mother wavelet.

• scale2: (optional): scalar float or one-dimensional float array of sizeM1 of parameter values
related to second parameter taken by mother wavelet]

• ...

Keywords:

• absolute: boolean if set outputs absolute part of CWT (default: False)

• edge: scalar of introducing extra edge pixels (default: 0)

• imaginary: boolean if set outputs imaginary part of CWT (default: False)

• kk: 2d float array of reciprocal space variable as input (default = None)
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Figure 4: Left: Original image and CWT for various scales, demonstrating how the signal is
reduced when the scale of the wavelet is far from the scale of the signal. Right: Real part of CWT
at location of peak in Gaussian signal as a function of wavelet scale, for three norms. This is the
same figure as shown earlier. For L1 norm, which is the default, the CWT is maximal at the scale
of the Gaussian signal.

• mother: string of name of mother wavelet: ’mexicanhat’ (default = ’mexicanhat’)

• norm: scalar integer of norm used in transform, i.e. 1, 2 or np.inf (default: 1)

• real: boolean if set outputs real part of CWT (default: False)

Output:

• cwt: multi-dimensional float array of CWT of dimension Nx ×Ny[×M0][×M1][×...].

The two mother wavelets available are the 2d mexican hat and a 2d Gaussian (not a wavelet of
course). Other more advanced mother wavelets are possible. The name construct wvl func +

mother + 2, e.g. wvl func mexicanhat2. The mother wavelet, which will normally not be
called directly, is structured as follows:
Input:

• kx: two-dimensional floating array of x-component of reciprocal coordinate.

• ky: two-dimensional floating array of y-component of reciprocal coordinate.

• scale1: scalar float or one-dimensional float array of size M0 of parameter values related to
first parameter taken by mother wavelet.

• scale2: (optional): scalar float or one-dimensional float array of sizeM1 of parameter values
related to second parameter taken by mother wavelet]

• ...

Keywords:

• norm: scalar integer of norm used in transform, i.e. 1, 2 or np.inf (default: 1)

Output:
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• wavelet: two-dimensional float array of scaled wavelet function in reciprocal space.

The demo demo2 shows an example of the usage of wavelet 2d and reproduces the analytical
exercise of calculating the Mexican Hat CWT of a two-dimensional Gaussian intensity pulse. The
resulting plots are shown in Fig. 4. Below, we show a demonstration of the application of the 2d
CWT to solar data.
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Figure 5: Demonstration of 2d wavelet CWT for various scales on an AIA 171Åimage.
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