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Non-equilibrium behaviour:  
•  long timescales of cold atomic gases  
•  sudden switching and subsequent 

relaxation and thermalisation 
•  SC vortices in time-dependent fields 
Emergent behaviour: 
•  Topological excitations, emergent 

collective modes, quantum fluctuations 
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Exponential relaxation vs. Gaussian 
relaxation towards equilibrium in a 
small system coupled to a bath. 
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A. Hubbard Hamiltonian

We divide the system into a local subsystem (S) and a
bath (B). The subsystem (bath) is described by a Hamil-
tonian HS (HB) acting on the subsystem (bath) Hilbert
space. Let us denote the subsystem (bath) eigenstates as
|s〉S (|b〉B) with energies εs (εb). The subsystem and bath
are coupled by a Hamiltonian λV . We will use λ as a tun-
able parameter to control the strength of this coupling.
At λ = 0, the eigenstates are products of subsystem and
bath eigenstates, |sb〉, with energies Esb = εs + εb. At
non-zero λ, the eigenstates are in general entangled with
respect to the subsystem-bath partition. We denote these
composite eigenstates by |A〉 (using an uppercase index)
and their energies by EA.

FIG. 2. Schematic diagram of a two-site subsystem in a lattice
with 9 sites (L = 9).

In this work, we focus on the Hubbard model away
from half filling as a simple model of interacting fermions.
More specifically, we consist of a two-site subsystem in
an L-site Hubbard ring of fermions such that the Hamil-
tonian takes the form H = HS +HB + λV with

HS = −
∑

σ=↑,↓

Jσ(c
†
1σc2σ + h.c.) + U(n1↑n1↓ + n2↑n2↓) ,

HB = −
L−1
∑

i=3

∑

σ=↑,↓

Jσ(c
†
iσci+1,σ + h.c.) + U

L
∑

i=3

ni↑ni↓ ,

λV = −λ
∑

σ=↑,↓

Jσ
[

(c†2σc3σ + c†1σcLσ) + h.c.
]

. (3)

where c†iσ is a creation operator for a fermion with spin

σ at site i and niσ = c†iσciσ is the number operator on
site i with spin σ. This Hamiltonian describes a ring
with the subsystem sites i = 1, 2 and bath sites i = 3 to
L with two links between the subsystem and the bath.
Note that, in the case of λ = 1, the Hamiltonian describes
an homogeneous ring. We choose the hopping integrals
Jσ = J(1 + ξ sgn(σ)), with ξ = 0.05 to remove level de-
generacies associated with spin rotation symmetry. (We
will use J as the unit of energy.) Breaking spin sym-
metry and the presence, in general, of modified hopping
integrals between sites i = 2 and 3, as well as between
sites i = L and 1 make this system non-integrable for
non-zero U .

 0

 500

 1000

 1500

 2000

 2500

-15 -10 -5  0  5  10  15  20

g(
E 0

)

E0

λ = 0.1
λ = 1
λ = 3
λ = 10

FIG. 3. The density of states g(E0) of the system at composite
energy E0 for different coupling strengths, λ (as labelled), for
an L = 9 site lattice where U = J = 1. g(E0) is generated
as a histogram by counting eigenstates in a Gaussian window
centered on E0 with width 0.5J .
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FIG. 4. The density of composite states g(E0) of the sys-
tem at composite energy E0 for different Hubbard interaction
strengths, U (as labelled), for an L = 9 site lattice where
λ = 0.5. g(E0) is generated as a histogram by counting eigen-
states in a Gaussian window centred on E0 with width 0.5.
(J = 1.)

The total particle number, N , and spin component,
Sz, are conserved in addition to the total energy of the
composite system. In the numerical results we present,
we consider lattices with up to L = 9 sites and with 8
fermions of total spin Sz = 0. The two-site subsystem
has MS = 16 eigenstates and the 7-site bath has 8281
eigenstates, while the composite 9-site system has a total
of M = 15876 states and an average level spacing ∆ #
10−3J .

The spectrum of the composite system has a smooth
quasi-continuous density of states g(E0) for a range of λ
and U . This is illustrated in Figs. 3 and 4. The centre
of the spectrum is located at E0 # 1.77J . The spectrum
develops peaks for large λ and U/J . In the case of λ$ 1,

Supercurrents around pinned vortex in 
time-dependent external field  

BEC in a double-well potential after abrupt decrease of 
barrier height; oscillations show different time scales (right) 


