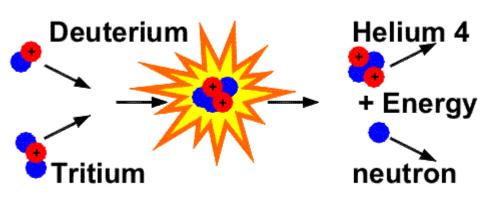
Magnetically Confined Fusion: Transport in the core and in the Scrape- off Layer

Bogdan Hnat

Joe Dewhurst, David Higgins, Steve Gallagher, James Robinson and Paula Copil

centre for fusion, space and astrophysics

Fusion Reaction



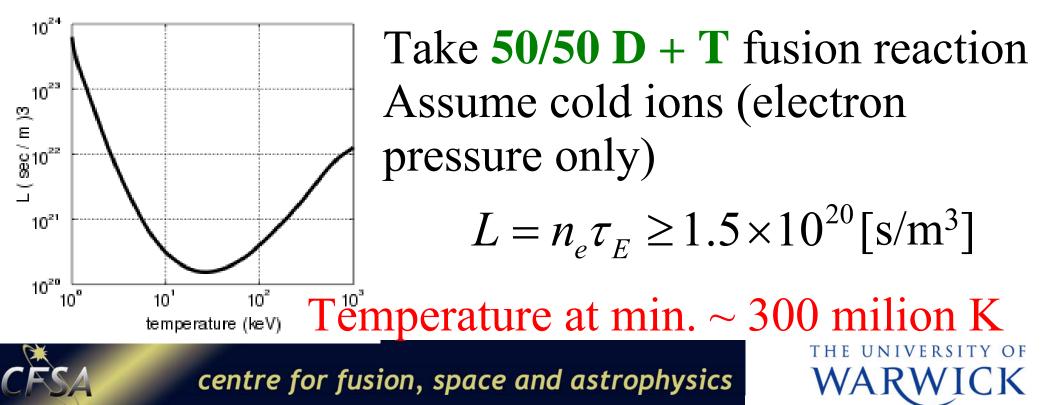
 $^{2}H + ^{3}H \rightarrow ^{4}He + n$ Lower binding energy for $^{4}He + energy of the$ neutron = ~ 17.6 MeV

- Extra neutron in each nuclei increases collision rate
 Electrostatic forces small one proton per nucleus
- Result: cross section maximum at relatively low temperature of ~ 300 milion K.
- ²H extracted from see water, ³H can be produced ⁶Li + n \rightarrow ⁴He + T or ⁷Li +n \rightarrow ⁴He + T + n

centre for fusion, space and astrophysics

Lawson's criterion

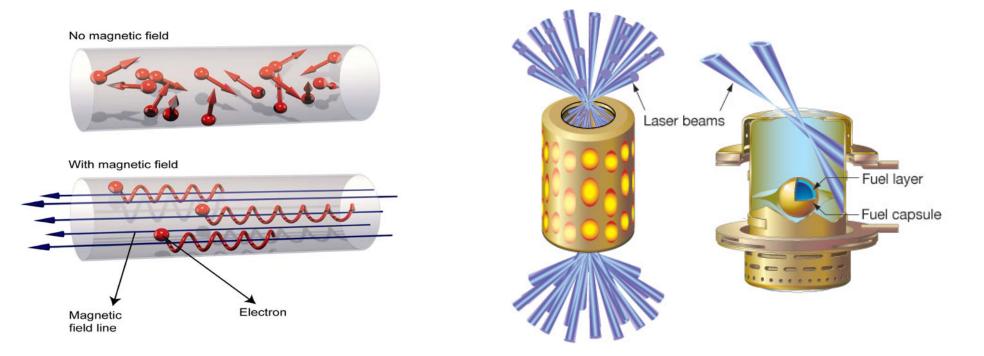
- Confinement time τ_E=Energy content / Rate of Loss
 Stationary state: equalise energy loss with input of thermal energy (keep *T* constant)
- Define $L = n_e \tau_E$, look for *T* at which fusion reaction produces enough energy to sustain itself



Realising Lawson's criterion

Condition $L = n_e \tau_E \ge 1.5 \times 10^{20}$ can be achieved by:

• Large values of τ_E – magnetic confinement, or • Large density n_e – inertial confinement



centre for fusion, space and astrophysics

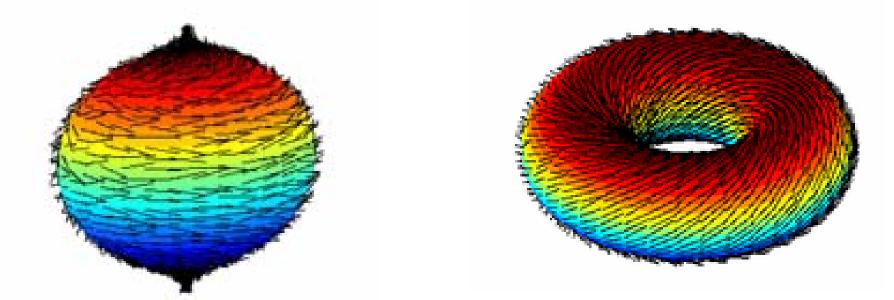
THE UNIVERSITY OF

Confinement and topology

Poincare's theorem (in my own words...)

Let **S** be a smooth, closed surface and C(x) be well behaved vector field such that the component of **C** tangent to **S** never vanishes.

The surface **S** must then be a torus.



centre for fusion, space and astrophysics

THE UNIVERSITY OF

Confinement and topology

Consider the outmost bounding surface of some confined plasma.

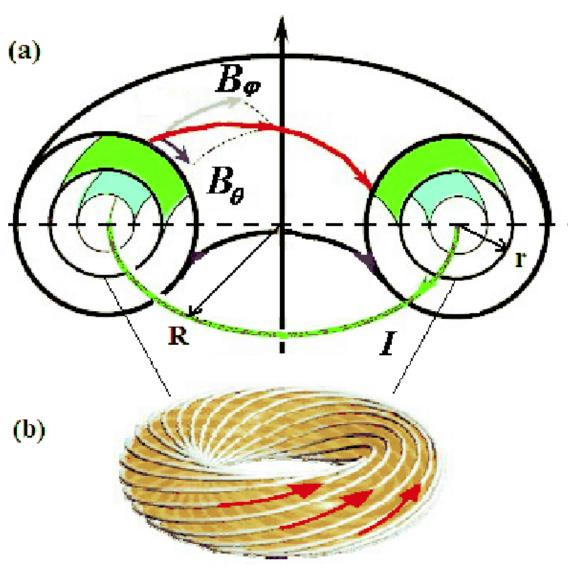
- Particles can stream free along the magnetic field lines
- An ideal confining magnetic field should have no component normal to the bounding surface
- Magnetic field B must cover the entire surface and the tangent component can not vanish anywhere

Conclusion:

The bounding surface must be a torus.

centre for fusion, space and astrophysics

Flux surfaces



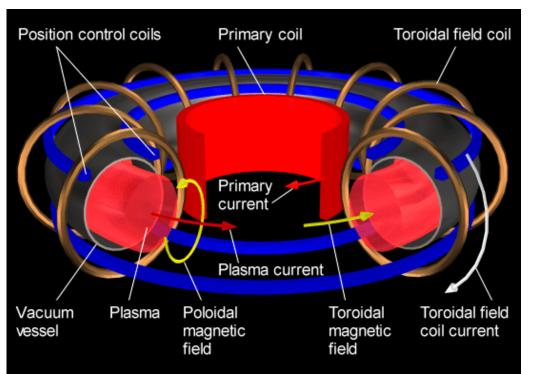
Rational surfaces: magnetic field line on such surface closes on itself after n toroidal and m poloidal turns
Ergodic surface: magnetic

• Ergodic surface: magnetic field line never closes on itself, thus covering densly the surface

• Stochastic regions (volums): magnetic field has radial component which allows for fast transport between different flux surfaces (can not support pressure gradient)

centre for fusion, space and astrophysics

Tokamak



Primary coil indices toroidal magnetic field
Pure toroidal field
configuration is unstable
Plasma current is driven in toroidal direction, inducing poloidal field

Magnetic field: 0.6 T Density: 2x10¹⁹ [1/m^3] Plasma current: 1-2 MA

 $\nabla_{r} p = (\vec{j} \times \vec{B})_{r}$

centre for fusion, space and astrophysics

MAST – Spherical tokamak

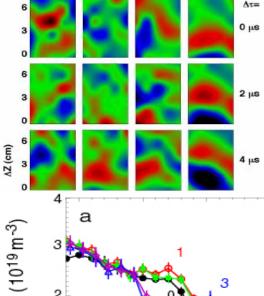


Electricity cost ~ $\beta^{-0.4}$

More compact in size Less prone to MHD instabilities Lower B – cheaper electricity

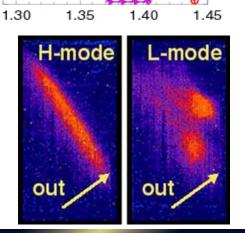
centre for fusion, space and astrophysics

Different confinement regions

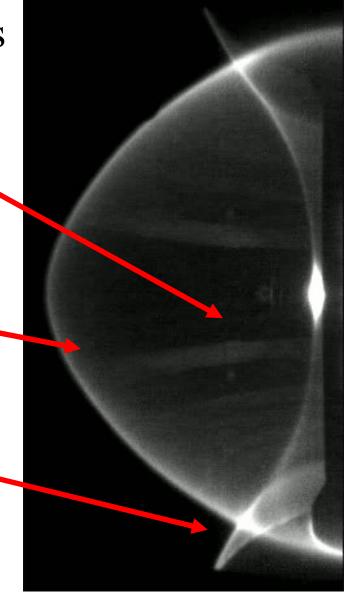


Core: Hot collisionless plasma, $\beta \sim 1$, $\delta x / < x > \ll 1$

Edge: strong flow shear, steep gradients



Scrape-Off Layer: Cooler, low B, atomic physics effects



centre for fusion, space and astrophysics

Particle Transport: classical estimates $\partial_t (3/2nT) + \nabla \bullet Q = S_{heat}$ $\partial_t n + \nabla \bullet \Gamma = S_{part}$ Normally we assume that: $\Gamma = -D\nabla_{\perp}n$ $Q = -\kappa \nabla_{\perp}T$ $\Gamma_r \approx (n_r - n_{r+\Delta r}) v_r = \left[n_r - (n_r + \partial_r n \Delta r + \dots) \right] v_r = -(v_r \Delta r) \nabla_r n$ $v_r \approx \frac{\Delta r}{M}$ and we assume that $\Delta r \approx \rho_e$ thus $D_r^e = v_{ei} \rho_e^2$ $\rho_i = \left(\frac{m_i}{m_e} \right)^{1/2} \rho_e \quad \text{and} \quad v_{ie} = \left(\frac{m_e}{m_i} \right) v_{ei} \text{ thus } \Gamma_r^e = \Gamma_r^i$

Ions and electrons contribute equally to particle transport
Same specie collisions do not contribute (momentum conservation)

centre for fusion, space and astrophysics

THE UNIVERSITY OF

Heat Transport: classical estimates $\partial_t n + \nabla \cdot \Gamma = S_{part}$ $\partial_t (3/2nT) + \nabla \cdot Q = S_{heat}$

Assume temperature gradient in radial direction

$$Q_r \approx \frac{1}{2} mn \left[(v_{th})_r - (v_{th})_{r+\Delta r} \right] v_r = -\kappa_r \nabla_r T; \ \kappa_r^i = \frac{n_i \rho_i^2}{2\tau_{ii}} = n_i \chi_i$$

In parallel direction the step size in the mean free path $\kappa_{\parallel} \approx nT \tau_{ee} \ / \ m \propto T^{5/2}$

- Same specie collisions important for heat flux
- Electrons dominate parallel heat transport
- Collision increase χ_{\perp} and decrease χ_{\parallel}

centre for fusion, space and astrophysics

WARWICK

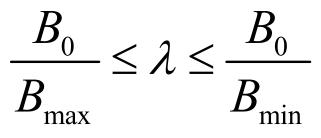
Transport: neoclassical estimates

Assume particle is moving on a flux surface with magnetic field magnitude between B_{min} and B_{max} . Define:

$$\lambda \equiv \frac{2\mu B_0}{mv^2} = \frac{v_\perp^2 B_0}{v^2 B}$$

A particle can never enter the region where $\mu B > E - Ze\Phi$

All particles must then satisfy $0 \le \lambda \le (B_0/B_{min})$.



Particles trapped by the mirror force, move on the outboard side of the flux surface.

This trapped particle orbits are called banana orbits.

centre for fusion, space and astrophysics

Transport: neoclassical estimates

The width of the banana orbit is given by: $\Delta r \simeq \rho_n \sqrt{\varepsilon}$

$$\rho_p \equiv \frac{v_{th}}{\Omega_p}$$
, where $\Omega_p = \frac{eB_p}{m}$ and $\varepsilon \equiv \frac{a}{R}$

Taking f_t as fraction of trapped particles heat diffusivity χ is

$$\chi_i^{ban} = f_t (\Delta r)^2 v_{eff} = (2\varepsilon)^{1/2} (\rho_{pi} \sqrt{\varepsilon})^2 \frac{v_{ii}}{\varepsilon} = \sqrt{2\varepsilon} \rho_{pi}^2 v_{ii}$$

Comparing classical and neoclassical heat diffusivities

$$\frac{\chi_i^{neoc}}{\chi_i^c} = \sqrt{2\varepsilon} \left(\frac{B}{B_p}\right)^2 \sim 10 - 50$$

CÉSA

centre for fusion, space and astrophysics

Turbulent transport estimate

• Turbulence driven by micro scale instabilities (drift wave instability, Ion Temperature Gradient-ITG, etc...)

- Gradients are sources of free energy large fluctuations at plasma edge are expected
- Often modelled as purely electrostatic

$$md_t \vec{v} = -\nabla p + q(\vec{E} + \vec{v} \times \vec{B})$$
 multiply $\vec{B} \times$

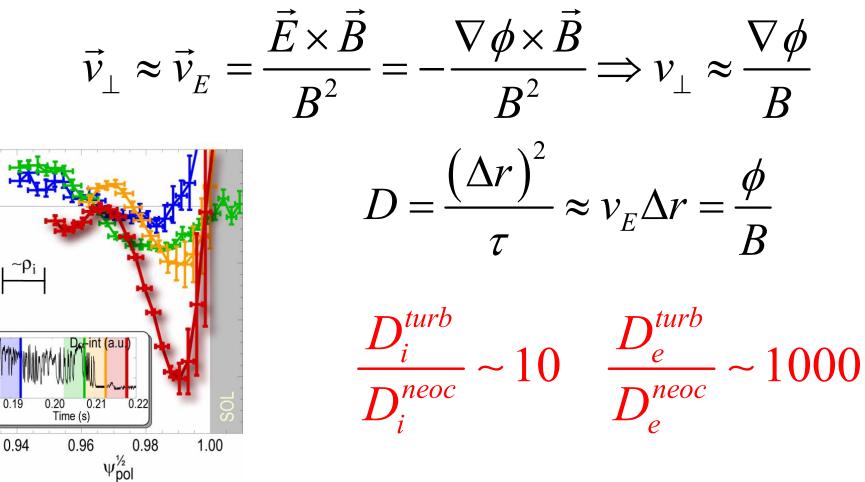
• Neglect inertial terms, take velocity perpendicular to B

$$\vec{v}_{\perp} = \vec{v}_E + \vec{v}_{diam} = \frac{\vec{E} \times \vec{B}}{B^2} + \frac{\vec{B} \times \nabla(nT)}{B^2}$$

centre for fusion, space and astrophysics

Turbulent transport estimate

- Often modelled as purely electrostatic
- Neglect diamagnetic part



ſ

(kV/m)

ய் -10

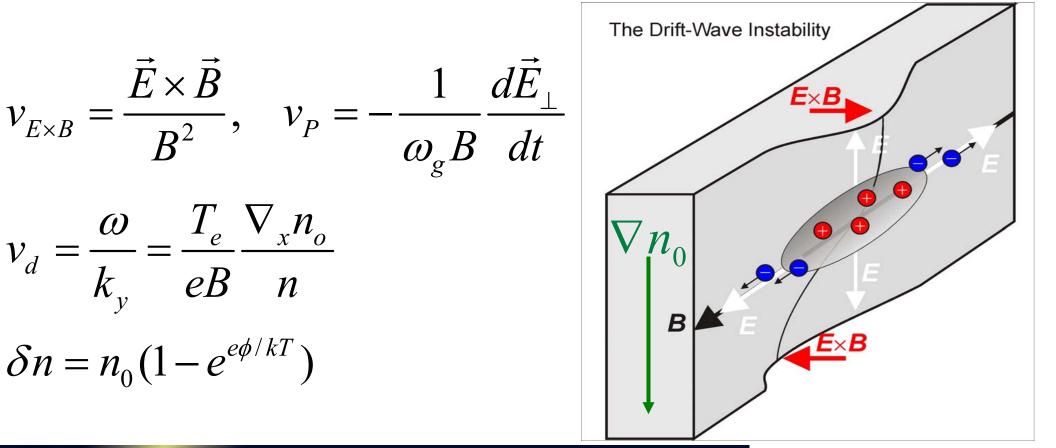
-15

-20

centre for fusion, space and astrophysics

Sources of turbulence – drift waves

- Ions dominate perp dynamics, electron parallel dir.
- Quasineutrality: $n_e = n_i$, cold ions: $grad(p_i) = 0$
- No e-i collisions: $\delta \varphi$ is in phase with δn



centre for fusion, space and astrophysics