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ABSTRACT

Context. Observations show that transverse oscillations occur commonly in solar coronal loops. The rapid damping of these waves
has been attributed to resonant absorption. The oscillation characteristicscarries information of the structuring of the corona. However,
self-consistent seismological methods to extract information from individual oscillations is limited because there are less observables
than model unknown parameters and the problem is underdetermined. Furthermore, it has been shown that one-to-one comparisons
of the observed scaling of period and damping times with wave damping theories is misleading.
Aims. We aim to investigate if seismological information can be gained from the observed scaling laws in a statistical sense.
Methods. A statistical approach is used whereby scaling-laws are produced by forward modelling using distributions of values for
key loop cross-sectional structuring parameters. We study two types ofobservations: 1) transverse loops oscillations as seen mainly
with TRACE and SDO and 2) running transverse waves seen with CoMP.
Results. We demonstrate that the observed period-damping time scaling law does provide information about the physical damping
mechanism, if observations are collected from as wide as possible rangeof periods and a comparison with theory is performed in a
statistical sense. The distribution of the ratio of damping time over period, i.e. the quality factor, has been derived analytically and
fitted to the observations. A minimum value for the quality factor of 0.65 has been found. From this, a constraint linking the ranges
of possible values for the density contrast and inhomogeneity layer thickness is obtained for transverse loop oscillations. If the layer
thickness is not constrained, then the density contrast is maximally equal to3. For transverse waves seen by CoMP, it is found that the
ratio of maximum to minimum values for these two parameters has to be less than 2.06. i.e. the sampled values for the layer thickness
and Alfvén travel time comes from a relatively narrow distribution.
Conclusions. Now that more and more transverse loop oscillations have been analysed, a statistical approach to coronal seismology
becomes possible. Using the observed data cloud restrictions in the loop parameter space of density contrast and inhomogeneity layer
thickness are found and surprisingly for the running waves narrow distributions for loop parameters have been found.
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1. Introduction

Transverse waves are pervasive in the solar corona. They
have been detected with confidence since 1998 (Aschwanden
et al. 1999; Nakariakov et al. 1999) in the form of transverse
loop oscillations (TLOs). To date, more than 50 TLOs have
been reported with periods ranging between 100s and 3 hours
(Aschwanden et al. 2002; Wang & Solanki 2004; Verwichte
et al. 2004; Hori et al. 2005, 2007; Van Doorsselaere et al.
2007; De Moortel & Brady 2007; Van Doorsselaere et al. 2009;
Verwichte et al. 2009, 2010; Mrozek 2011; White & Verwichte
2012; White et al. 2012; Verwichte et al. 2012). The majority
of these oscillations have been studied using EUV imagers such
as TRACE (Handy et al. 1999), EUVI/STEREO (Howard et al.
2008) and AIA/SDO (Lemen et al. 2012). They are reported to
damp quickly with oscillation quality factors in the range 0.6-
5.4.

Tomczyk et al. (2007) demonstrated using ground-
based spectral measurements with the Coronal Multichannel
Polarimeter (CoMP) (Tomczyk et al. 2008) that small-amplitude
propagating transverse waves are ubiquitous in the solar corona.
This result seems to be supported by the recent report of running
transverse waves in coronal loops by AIA/SDO (McIntosh et al.
2011; Wang et al. 2012).

A widely accepted explanation for the rapid damping is the
mechanism of resonant absorption where the transverse waveis
considered to be an Alfv́enic kink mode (or surface Alfv́en mode
Wentzel 1979; Goossens et al. 2012) whose nature evolves,
through a resonance at a loop layer where its frequency matches
the local Alfvén frequency, from a global transverse loop motion
to a local mainly azimuthal motion (Ruderman & Roberts 2002;
Goossens et al. 2002). Once local, the mode cannot be observed
directly and it then proceeds to damp dissipatively enhanced by
phase-mixing (or alternatively collisionlessly). Crucially it is the
rate of mode evolution from global to local that is observed as
the rapid damping of the transverse wave. The observed damp-
ing time depends on the structure of the Alfvén frequency across
the loop.

Hence, besides the loop’s average Alfvén speed and mag-
netic field strength (Nakariakov & Ofman 2001), there is the
potential for seismologically determining the loop cross-section
profile, including the density contrast, which are difficult to mea-
sure directly (e.g. Aschwanden et al. 2003; Schmelz et al. 2003;
Terzo & Reale 2010). By combining the theories for the prop-
agation and damping of the transverse wave it is possible to
constrain self-consistently the unknown parameters in theprob-
lem (Verwichte et al. 2006). However, for the resonant absorp-
tion damping model, the problem is under-determined and it is
not possible to deduce both density contrast and inhomogene-
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ity layer thickness independently (Arregui et al. 2007; Goossens
et al. 2008; Arregui & Asensio Ramos 2011).

Ofman & Aschwanden (2002) modelled the scaling rela-
tions, e.g. between damping time and period, for different damp-
ing mechanisms. They found that the observed scaling rela-
tions were more compatible with phase mixing. However, it was
pointed out by Arregui et al. (2008) that a one-to-one compar-
ison between the observed scaling and the linear scaling from
resonant absorption inherently makes the unrealistic assumption
that all loops have the same cross-sectional structuring. In fact,
by allowing the cross-sectional profile to vary between events,
they showed that the scaling from resonant absorption can easily
depart from linear. Thus, they concluded that scaling laws were
not sufficient to distinguish damping mechanisms, because reso-
nant absorption can reproduce several dependencies using care-
fully chosen distributions of equilibrium parameters. However,
now it becomes possible to use the inverse approach. Since 2002
(Aschwanden et al. 2002), the number of observations and the
range of observed periods has increased. Given the observed
scaling laws of periods and damping time, can we find informa-
tion on the statistical distributions of equilibrium parameters of
coronal loops that exist in the solar corona? In this articlewe will
show that it is possible to use statistical and forward-modelling
approaches to model scaling laws of loops. This statistical, seis-
mological information on the coronal loop ensemble can poten-
tially help to distinguish between different coronal loop models
and heating mechanisms.

The paper is structured in two main parts. Section 2 inves-
tigates statistically the scaling of TLOs using two approaches.
Section 3 studies statistically the transverse waves seen by
CoMP (Tomczyk et al. 2007). We discuss our findings in Sect.
4.

2. Statistics of transverse loop oscillations

Since 2002, when Ofman & Aschwanden (2002) modelled
the scaling relations for standing transverse loop oscillations
(TLOs), many more observations have been analysed. Table 1
lists 52 events of TLOs from 13 studies. Figure 1 shows the dis-
tribution of damping times,τ, versus oscillation period,P. We
can find a power-law relationship between those two observed
quantities as

τ = α Pγ , log10α = 0.44± 0.31 , γ = 0.94± 0.12 . (1)

Under the assumption of a loop where the density drops from
inner to external conditions over a thin transition layer, the res-
onant absorption rate is given by (e.g. Ionson 1978; Hollweg&
Yang 1988; Goossens et al. 1992; Ruderman & Roberts 2002)

τ = ξE P , ξE(ℓ/a, ζ) = F (ℓ/a)−1 ζ + 1
ζ − 1

, (2)

where F, ℓ, a and ζ are parameters that describe the cross-
sectional profile of the loop mass density,ρ(r). Here, we choose
a half-wavelength sinusoidally varying transition layer,i.e.
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ρi
=



















1 r − a < −ℓ/2
1
2

[

(ζ−1 + 1)+ (ζ−1 − 1) sin π(r−a)
ℓ

]

|r − a| ≤ ℓ/2
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,

(3)
whereρi is the loop-axis equilibrium density andζ is the ratio
of the loop-axis density over the external density, i.e.ζ=ρi/ρe.
For such a profile,F = 2/π. Equation (2) is strictly speaking
only valid in the regime whereℓ ≪ a, though Van Doorsselaere

Table 1. Characteristics of observed TLOs

# P (s) τ (s) L (Mm) Reference(1)

1 261 870 168 A02
2 265 300 72
3 316 500 174
4 277 400 204
5 272 849 162
6 435 600 258
7 143 200 166
8 423 800 406
9 185 200 192
10 396 400 146
11 234 714 350± 50 WS04
12 249± 33 920± 360 218 V04
13 448± 18 1260± 500 218
14 392± 31 1830± 790 228
15 382± 12 1330± 528 233
16 358± 30 1030± 570 237
17 326± 45 980± 400 235
18 357± 89 1320± 720 236
19 567 1500 400± 100 H05 & H07
20 918 4200 800± 200
21 425 2300 384 VD07
22 436± 4.5 2129± 280 400± 40
23 243± 6.4 1200 400± 40
24 895± 2 521± 8 228 DMB07 & VD09
25 452± 1 473± 6 228
26 630± 30 1000± 300 340± 15 V09
27 2418± 5 3660± 80 680± 50 V10
28 377 500 250 M11
29 225± 40 240± 45 121± 12 WV12
30 215± 5 293± 18 111± 11
31 213± 9 251± 36 132± 13
32 216± 27 230± 23 113± 11
33 520± 5 735± 53 396± 40
34 596± 50 771± 336 374± 37
35 212± 20 298± 30 279± 28
36 256± 22 444± 105 240± 24
37 135± 9 311± 85 241± 24
38 115± 2 175± 30 159± 16
39 103± 8 242± 114 132± 13
40 302± 14 306± 43 466± 50 W12
41 565± 4 666± 42 301± 30 V12
42 222± 18 420± 360 274± 30
43 474± 12 900± 120 400± 30
44 1170± 6 1218± 48 400± 30
45 623± 4 960± 60 270± 30
46 150± 5 216± 60 188± 20
47 122± 6 348± 360 160± 20
48 273± 54 468± 36 171± 20
49 282± 6 606± 186 122± 20
50 491± 18 834± 6 262± 20
51 348± 7 906± 288 238± 20
52 340± 3 930± 144 200± 20

(1) The reference citations are listed in Fig. 1

et al. (2004) showed that it still provides a relatively accurate
extension into the regime of finite resonance layer widths. Also,
Eq. (2) does not describe any transient behaviour in the damping
(Pascoe et al. 2012).

Equation (2) shows that the resonant absorption time-scale
scales linearly with period. This matches well with the observed
scaling. However, as pointed out by Arregui et al. (2008), a one-
to-one comparison is problematic because Eq. (2) also depends
onℓ/a andζ, which will vary between loops. We can identify the
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observed fit parameterα with ξE(ℓ/a, ζ). What possible range of
values ofℓ/a andζ gives the best match betweenα andξE?

Fig. 1. Damping time versus period of measured TLOs. The thick line
is a power-law fit of the formτ = α Pγ. The parallel lines indicate con-
tours of quality factorτ/P. The symbols correspond to the following
publications reporting TLOs. A02: Aschwanden et al. (2002), WS04:
Wang & Solanki (2004), V04: Verwichte et al. (2004), H05: Hori et al.
(2005), H07: Hori et al. (2007), VD07: Van Doorsselaere et al. (2007),
DMB07: De Moortel & Brady (2007), VD09: Van Doorsselaere et al.
(2009), V09: Verwichte et al. (2009), V10: Verwichte et al. (2010),
M11: Mrozek (2011), WV12: White & Verwichte (2012), W12: White
et al. (2012), V12: Verwichte et al. (2012).

2.1. Modelling of the damping time-period scaling

In order to make a comparison between theoretical and observed
scaling, the following forward-modelling procedure is adopted.
The hidden variables are allowed to have a distribution of plau-
sible values and are assumed to be independent. The distribution
of the thickness of the inhomogeneity layer,ℓ/a, and the density
contrast,ζ, are modelled as

d(ℓ/a)
dN

= H(ℓ/a, (ℓ/a)min, (ℓ/a)max) ,

dζ
dN
= H(ζ, ζmin, ζmax) , (4)

whereH(x, xmin, xmax) is the top-hat function defined as

H(x, xmin, xmax) =

{

(xmax− xmin)−1 xmin ≤ x ≤ xmax
0 x < xmin or x > xmax

.

(5)
Alternatively, forζ, we may also use a Jeffrey’s probability den-
sity function,J(x), which is defined as

J(x, xmin, xmax) =

[

x ln

(

xmax

xmin

)]−1

. (6)

Inherently, the distributions do not depend on other physical pa-
rameters or on the period. Thus, we make the assumption that
the distribution of these parameters is the same for all sizes of
loops. Also, the oscillation period has a distribution

d log10 P

dN
= H(log10 P, log10 Pmax, log10 Pmin) , (7)

with Pmin = 50 s andPmax = 3600 s, chosen to reflect the bias
of observers to identify and study oscillations in the rangeof
several minutes.

There areM number of observations of TLOs. We thus sam-
ple M values from these distributions to produceM sets of val-
ues ((ℓ/a)i, ζi, Pi), i ∈ [1,M]. Using Eq. (2), the corresponding
values ofτi are calculated. Figure 2 shows an example of a reali-
sation. Then, a power-law as Eq. (1) is fitted to this realisation of
M pairs of values (Pi, τi) andα andγ determined. This process
is repeated to produceN realisations ofα andγ. The distribution
of α andγ, it’s mean and standard deviation, are then compared
with the observations. Figure 3 shows how the forward-modelled
distribution of the observed scaling parametersα andγ match
the observed values well with similar uncertainties. The same
conclusions can be drawn when using a Jeffrey’s distribution for
ζ.

Fig. 2. An example of a realisation of a set of forward-modelled set
of (Pi, τi) of the same number as currently reported TLOs. The grey
circles indicate a realisation of a 1000 sets. Here,ζ andℓ/a are sampled
uniformly from the intervals [0,4] and [0,2], respectively.

Now we wish to investigate if, by optimising the fit between
forward modelled and observed distribution, we can constrain
the intervals ofζ and ℓ/a and hence extract seismologically
information about the transverse structuring of the oscillating
loops. Unfortunately, because the spread ofα is large, it is diffi-
cult to constrain both hidden variables. Therefore, we decide to
fix ℓ/a to always be sampled uniformly from the interval [0,2].
We also fixζmin to be unity. Thus, the only remaining free pa-
rameter isζmax. For each value ofζmax we compute a forward-
modelled distribution and find its scaling parameters. Figure 4
shows how the forward-modelled value ofα varies as a function
of ζmax. Though the error bars are quite large, we can identify
the optimal valueζmax= 3 and that most likelyζ lies in the range
[1,10].

2.2. The quality-factor probability density distribution

We use a second method to constrainℓ/a andζ by considering
the distribution of the quality factor. As Fig. 2 illustrates, a set of
values sampled from the distributions inℓ/a andζ, and using Eq.
(2), leads to a non-uniform spread of values in theP-τ parameter
space. We derive analytically this distribution from the distribu-
tions of ℓ/a andζ. We make use of the following relations for
distributions of dimensionless quantitiesx, y andz where the re-
lationsy = y(x) andz = xy are monotonic:

dy
dN
=

∣

∣

∣

∣

∣

dx(y)
dy

∣

∣

∣

∣

∣

dx
dN
,

dz
dN
=

+∞
∫

−∞

dx
dN

d(z/x)
dN

dx
|x|
. (8)
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Fig. 3. Forward modelling of power law for resonant absorption model
with uniform distributions.ℓ/a andζ are sampled uniformly from the
intervals [0,2] and [0,4], respectively. The hatched region denotedval-
ues ofα less thanF/2, which Eq. (2) does not permit.

Fig. 4. The mean parameter log10α as a function ofζmax with ζmin = 1
obtained fromN fits to a forward modelled sample of values of periods
and damping times, using the uniform distribution forℓ/a given in Eq.
(4) and a uniform (Left) and a Jeffrey’s (Right) distributions forζ as
given in Eqs. (4) and (6), respectively. The dashed curves boundthe
one-σ variation in log10α. The horizontal long-dashed line shows the
observed value of log10α bounded by its one-σ variation.

We introduce the notationsh(ζ) = (ζ+1)/(ζ−1),y = F(ℓ/a)−1 and
q = τ/P for the inverse Atwood number, inverse inhomogeneity
scale-length and quality factor, respectively (The function h(ζ)
is shown in Fig. 6). Equation (2) then simply readsq = y h. We
find for uniform distributions ofℓ/a andζ

dy
dN
=

1
y2

H
(

y, F(ℓ/a)−1
max, F(ℓ/a)−1

min

)

, (9)

dh
dN
=

2
(h − 1)2

H (h, h(ζmax), h(ζmin)) ,

=
2y2

(y − q)2
H

(

y,
q

h(ζmin)
,

q
h(ζmax)

)

. (10)

Using the formula for the product of two distributions (8),
the distribution for the quality factor becomes of the form

dq
dN
∝

ymax
∫

ymin

dy
y(y − q)2

= q−2 φ(q) , (11)

Fig. 5. Distribution of quality-factor,τ/P, from the observations (rough,
blue distribution) and from the analytical distribution using Eq. (11)
with ℓ/amax = 1.2 andζmax = 9.5.

Fig. 6. The dependence ofh−1(ζ) andg(ζ) on ζ.

whereφ(q) contains the details of the ranges of values ofℓ/a and
ζ,

φ(q, (ℓ/a)min, (ℓ/a)max, ζmin, ζmax) =

[

q
q − y

+ ln
∣

∣

∣

∣

∣

y
q − y

∣

∣

∣

∣

∣

]ymax

ymin

,

(12)
and with

ymin = max

(

F
(ℓ/a)max

,
q

h(ζmin)

)

,

ymax = min

(

F
(ℓ/a)min

,
q

h(ζmax)

)

. (13)

Whenζ is Jeffrey’s distributed, we find the same result as above
except that the logarithmic terms inφ are absent. Equation (12)
is simplified if we take the reasonable choices (ℓ/a)min = 0 and
ζmin = 1. With ymin = F/(ℓ/a)max andymax = q/h(ζmax) Eq. (12)
reduces to

φ(q, (ℓ/a)max, ζmax) =
h(ζmax)

h(ζmax) − 1
− ln |h(ζmax) − 1|

− q (ℓ/a)max

q (ℓ/a)max− F
− ln
∣

∣

∣

∣

∣

F
q(ℓ/a)max− F

∣

∣

∣

∣

∣

,(14)
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Note that the distribution is only physical forτ/P above a lower
threshold value, (τ/P)min, which occurs whereymin = ymax, or

(τ/P)min =
F h(ζmax)
(ℓ/a)max

. (15)

It can easily be seen from Eq. (14) thatφ has a root at that value.
For ℓ/a andζ taken from the broadest ranges of [0,2] and [1,∞[,
φ becomes constant almost everywhere, except near (τ/P)min =

F/2 where the distribution drops to zero. For that case the distri-
bution scales as (τ/P)−2. The existence of a minimum threshold
in the quality factor has been discussed by Goossens et al. (2008)
in the context of individual oscillations.

Fig. 7. The allowed range ofℓ/a andζ for a range of values of (τ/P)min

as derived using Eq. (15). The ranges exist to the left of each curve
as illustrated with the shaded area for (τ/P)min = 0.65. The thick curve
represents the value ofζmax as a function of (ℓ/a)max that fits best the ob-
served quality factor distribution. A uniform distribution inζ has been
assumed. The use of a Jeffrey’s distribution instead would yield an al-
most identical curve. The dot indicates the values of (ℓ/a)max andζmax

for the fit with the smallestχ2.

From inspection of the quality factor values of the observa-
tions in Fig. 1, one may deduce that expect for one all obser-
vations haveτ/P ≥ 1 (There is one observation with a smaller
quality factor but the damping rate has a high uncertainty, Van
Doorsselaere et al. 2009). However, an estimate of (τ/P)min
based upon the observed lower limit inτ/P relies on only a few
measurements. Instead, we make use of all measurements and
fit the observed distribution with Eq. (11) with an arbitraryam-
plitude and with fixed values of (ℓ/a)min = 0 andζmin = 1. As a
function of (ℓ/a)max, we determine from the fit the best value of
ζmax. Figure 7 shows this fit as well as the contours of (τ/P)min,
calculated from Eq. (15). It approximately follows the contour
of constant (τ/P)min = 0.65. Overall, the best fit is forℓ/a = 1.2
andζmax = 9.5 (illustrated in Fig. 5). Then, using Eq. (15) and
the value of (τ/P)min = 0.65, we find the constraints

2.9 ≤ ζmax =
(ℓ/a)max+ 0.98
(ℓ/a)max− 0.98

< ∞ ,

0.98 ≤ (ℓ/a)max ≤ 2 . (16)

For (ℓ/a)max = 2, ζ is constrained to lie in the interval [1,2.9].
This result is consistent with what was found in the previous
subsection. Figure 7 shows that loops with simultaneously large
values ofℓ/a andζ, i.e. smooth and large contrasted loops, are
not consistent with the observations.

Fig. 8. The CoMP power ratio of downward propagating to upward
propagating waves versus the frequency (as taken from Verth et al.
2010) are displayed with red circles. A realisation from 1000 sam-
ples from the statistical distributions forVA,i ∈ [800,1000] km/s, ℓ/a
∈ [0.5,1],ζ ∈ [2.5,4] are shown as grey circles. The best fit to the obser-
vations, Eq. (21), is shown as the dashed line.

3. Statistics of transverse waves seen by CoMP

Let us now turn our attention to the propagating transverse waves
observed by CoMP (Tomczyk et al. 2007; McIntosh et al. 2008),
and also by SDO/AIA (McIntosh et al. 2011). We interpret the
spatial damping as attenuation due to resonant absorption (Verth
et al. 2010; Terradas et al. 2010). As in the previous section,
we want to perform seismology on the CoMP data in a statisti-
cal sense, by fitting the data using statistical distributions for the
loop cross-sectional equilibrium parameters, i.e. the density con-
trastζ and the thickness of the smooth layerℓ/a, and the internal
Alfv én transit timeτA,i .

The data we study is displayed in Fig. 2 of Verth et al. (2010)
(also as red circles in Fig. 8). They show the ratio of downward
propagating wave power (measured as Doppler shifts) with the
upward propagating wave power versus the wave frequency. The
data is obtained from thek−ω diagram for CoMP Doppler shifts
(McIntosh et al. 2008). In the work of Verth et al. (2010), it is
explained that the frequency-dependent power ratio can easily
be explained by resonant absorption. In contrast to the previous
section with the standing transverse oscillations, the damping for
these driven waves is acting as the waves travel along the loop,
rather than a temporal damping of the standing transverse waves.

The waves travel at the phase speed,vph, which equals the
kink speed (Edwin & Roberts 1983) in the thin loop limit. In the
zero plasma-β limit, vph is thus given by

vph = B

√

2
µo(ρi + ρe)

= VA,i

√

2ζ
ζ + 1

, (17)

where we have definedVA,i as the loop Alfv́en speed. Using
Eq. (17), we can now compute the frequency dependence of the
power ratio (using Eq. 7 in Verth et al. 2010):

<P( f )>ratio=
Pout( f )
Pin( f )

exp (T f ) , (18)

with

T(ℓ/a, ζ,VA,i) =
2L

vph ξE
=

√
2L
F

1
VA,i

(ℓ/a)
ζ − 1
√

ζ(ζ + 1)
, (19)
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where the previously computed expression for the phase speed
vph has been used, and the expression forξE from Eq. (2) is in-
serted. In the remainder of the manuscript we take the measure-
ment lengthL = 250 Mm as in Tomczyk & McIntosh (2009). The
factorT controls the rate of change of the power ratio as a func-
tion of frequency. It is a function of the loop parametersℓ/a, ζ
andVA,i , which are assumed to be fundamental properties of the
observed coronal loops. We wish to constrain the values of these
variables through statistical means, only for the specific loops.
Note that the value of these variables may differ for other loops
(especiallyVA,i) and an over-arching statistical study would have
to be conducted using many (currently non-existing) CoMP-like
observations to explore statistical constraints onℓ/a andζ for all
loops, such has been done in Sect. 2. We consider the three vari-
ables as independent statistical variables and each of themhas a
uniform distribution. To the uniform distributions forℓ/a andζ,
described in Eq. (4), we add a third uniform distribution forVA,i :

dVA,i

dN
= H(VA,i ,VA,i,min,VA,i,max) . (20)

With these variables, we can calculate the phase speed and
power-ratio of the transverse waves using Eqs. (17) and (18). To
obtain Fig. 8, we have generated 1000 different loops, and multi-
plied by a linear function in the frequency domainf to guarantee
an even spread across the spectrum. For the sake of simplicity,
we have taken the upward/downward ratioPout/Pin = 1, even
though Verth et al. (2010) foundPout/Pin = 0.91 from a fit to
the data. A good fit between the data and the statistical loops
is obtained forℓ/a ∈ [0.5,1], ζ ∈ [2.5,4] andVA,i ∈ [800,1000]
km/s. These fitting parameters above are not the only ones to
yield good results. Other combinations may yield similarlygood
results.

In Fig. 8, it can be observed that the spread of the statistical
points increases with increasing frequency. Also, whenf → 0,
the spread disappears and the power ratio becomes exactly unity.
This is a consequence of the exponential damping by resonant
absorption. Indeed, when taking the limitf → 0 in Eq. 19, the
argument goes exactly to 0. The increasing spread with increas-
ing frequency can also be understood in similar terms. For the
sake of simplicity, let’s assume thatT ∼ N(µ, σ2) has a Gaussian
distribution with meanµ and spreadσ. From elementary statis-
tics, we learn thatT f ∼ N( fµ, f 2σ2), resulting in a larger spread
for larger frequencies. Also, the mean will increase linearly with
f , which is observed in Fig. 8 as well.

In the end, only the statistical properties ofT determine the
fitting with the observed data points. Indeed, one may increase
the spread inVA,i by reducing the spread ofℓ/a while keeping the
average of their product constant. Likewise, the average Alfvén
transit time can be decreased by increasingℓ/a. Also (as can be
seen in Fig. 6), whenζ is increased, the resultingT is naturally
distributed more narrowly, allowing for a wider spread inVA,i .

We now take a more statistically rigorous approach. To gain
insight on the distribution ofT, we calculate the regression of
the logarithm of Eq. (18), and we find that

<P( f )>ratio= b eT f , ln b = −0.24± 0.17 , T = 350± 70 s ,
(21)

The uncertainties are calculated using the vertical spreadof the
residues (σP−Pfit = 0.54) as an error estimate on the initial mea-
surements and using the method as detailed in Chapter 15.2 of
Press et al. (2007). This produces a meanµT = 350 s, and stan-
dard deviationσ2

T
= 4900 s2 of the distributionT. From lnb =

-0.24, we estimatePout/Pin = 0.79. Verth et al. (2010) had found

a larger value ofPout/Pin = 0.91, but as this lies within one sigma
of our value, there is statistically no discrepancy.

Let us now considerT as a statistical distribution, being the
product of the independent statistical variablesVA,i , ℓ/a and
g(ζ)=(ζ − 1)/

√

ζ(ζ + 1). Similarly as in Sect. 2, an analytical
distribution could be calculated but becauseT depends on three
statistical variables and the dependency onζ is more elaborate,
this becomes impractical. Instead, we aim to constrain the inde-
pendent statistical variables using the fit. Since we assumethat
VA,i , ℓ/a andg(ζ) are independent, it is possible to write
√

2
πL
µT = µ1/VA,i µℓ/a µg(ζ) , (22)

2
π2L2

σ2
T
= (µ2

1/VA,i
+ σ2

τA,i
)(µ2
ℓ/a+ σ

2
ℓ/a)(µ2

g(ζ)+ σ
2
g(ζ)) − µ

2
1/VA,i
µ2
ℓ/aµ

2
g(ζ)

= σ2
1/VA,i
σ2
ℓ/aσ

2
g(ζ) + µ

2
1/VA,i
σ2
ℓ/aσ

2
g(ζ) + σ

2
1/VA,i
µ2
ℓ/aσ

2
g(ζ)

+ σ2
1/VA,i
σ2
ℓ/a µ

2
g(ζ) + µ

2
1/VA,i
µ2
ℓ/aσ

2
g(ζ) + µ

2
1/VA,i
σ2
ℓ/a µ

2
g(ζ)

+ σ2
1/VA,i
µ2
ℓ/a µ

2
g(ζ) . (23)

All the terms on the right hand side of Eq. (23) are positive.
By considering only the last term and dividing Eq. (23) by the
square of Eq. (22), we find

0.04 =
4900
3502

=

(

σT

µT

)2

>

(

σ1/VA,i

µ1/VA,i

)2

, (24)

because positive terms have been neglected in the right handside
of Eq. (23). Considering only the second and third to last term,
we can derive that

(

σℓ/a

µℓ/a

)2

< 0.04 ,

(

σg(ζ)

µg(ζ)

)2

< 0.04 , (25)

but also
(

σ1/VA,i

µ1/VA,i

)2

+

(

σℓ/a

µℓ/a

)2

+

(

σg(ζ)

µg(ζ)

)2

< 0.04 . (26)

These equations prove that the first four terms in Eq. (23) canbe
neglected compared with the last three terms.

The relations (24)-(25) contain information on the statis-
tical distribution of VA,i , ℓ/a and ζ. As we have done in the
forward modelling, we shall considerℓ/a as uniformly dis-
tributedH(ℓ/a, (ℓ/a)min, (ℓ/a)max). From statistics, we know that
for this distribution the mean and variance are equal toµℓ/a =
((ℓ/a)min + (ℓ/a)max)/2 andσ2

ℓ/a = ((ℓ/a)max− (ℓ/a)min)2/12, re-
spectively. Using Eq. (24), we find

(

σℓ/a

µℓ/a

)2

=
1
3

(

(ℓ/a)max− (ℓ/a)min

(ℓ/a)min + (ℓ/a)max

)2

< 0.04 , (27)

or using that (ℓ/a)max > (ℓ/a)min,

(ℓ/a)max− (ℓ/a)min

(ℓ/a)min + (ℓ/a)max
<
√

0.12 ⇒

(ℓ/a)max <
1+
√

0.12

1−
√

0.12
(ℓ/a)min = 2.06 (ℓ/a)min . (28)

This leaves a rather narrow range forℓ/a. If it is expected from
physical reasons or loop modelling that the inhomogeneity layer
covers the whole loop, (ℓ/a)max=2, then the lower boundary for
that length scale is (ℓ/a)min > 0.97.
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Fig. 9. Uncertainty interval ofVA,i,max/VA,i,min as a function of the rela-
tive variance (σT/µT)2, derived from Eq. (31) The interval given by Eq.
(32) for (σT/µT)2 = 0.04 is indicated.

Also assuming a homogeneous distribution ofVA,i , we can cal-
culate the meanµ1/VA,i (introducing the notation∆VA = VA,i,max−
VA,i,min) as

µ1/VA,i = E

[

1
VA,i

]

=
1
∆VA

VA,i,max
∫

VA,i,min

dVA

VA
=

1
∆VA

ln

∣

∣

∣

∣

∣

∣

VA,i,max

VA,i,min

∣

∣

∣

∣

∣

∣

, (29)

whereE[.] is the expected value of the argument function. The
variance is computed as

σ2
1/VA,i

= E















1

V2
A,i















−E

[

1
VA,i

]2

=
1

VA,i,minVA,i,max
−µ2

1/VA,i
. (30)

Thus, we find the condition forVA,i,min andVA,i,max:

0.04 >

(

σ1/VA,i

µ1/VA,i

)2

=
(∆VA)2

VA,i,minVA,i,max

1

ln2
∣

∣

∣

∣

VA,i,max

VA,i,min

∣

∣

∣

∣

− 1 . (31)

This transcendental equation can be solved numerically for
VA,i,max/VA,i,min, and the result is shown in Fig. 9. Forσ2

T
/µ2
T

= 0.04, we find

1 <
VA,i,max

VA,i,min
< 1.9885 , (32)

which shows that the loop Alfv́en speed is constrained even nar-
rower thanℓ/a.

Interestingly, Tomczyk & McIntosh (2009) found a phase
speed of 600 km s−1 for the propagating transverse waves. In
our current model (i.e. an overdense loop experiencing reso-
nant damping of the waves), this value is an upper limit for the
Alfv én speed in the loop:VA,i,max = 600 km s−1. This leads to a
minimum value for the Alfv́en speed ofVA,i,min = 300 km s−1,
in order to still be able to explain the small spread in the ob-
served power ratio. Such small values are conceivable sincethe
magnetic field strength in a loop arcade is expected to decrease
with loop length. Alfv́en speeds in the range of 300-400 km s−1

have been reported for loops with lengths larger than 650 Mm
(Verwichte et al. 2010).

To find estimates for the distribution of parameterζ, more
effort has to be made, because it occurs through the function
g(ζ). Let us as before assume thatζ is uniformly distributed
H(ζ, ζmin, ζmax). The mean and variance ofg(ζ) can be calcu-
lated analytically, see appendix A. Fixingζmin, we can compute
the maximally allowedζmax to satisfy Eq. (25). The results of
this computation are shown in Fig. 10 where contours of con-
stant values of (σg(ζ)/µg(ζ))2 are shown in the parameter space

Fig. 10. Contours of constant values of (σg(ζ)/µg(ζ))2 as a function of
ζmin andζmax. The dashed line is the bisector and the hatched region in-
dicates unphysical values ofζmax. The region in parameter space where
(σg(ζ)/µg(ζ))2 < 0.04 is shaded.

ζmin-ζmax. For (σT/µT)2 = 0.04, the valid range of values ofζmin
andζmax that are consistent with the observations are indicated
as a shaded region. The smaller the error inT, the smaller the
admissible region becomes (i.e. contours for smaller ratios are
more to the right). For all values of the error andζmin, ζmax→ ∞
is not excluded and thusζ is never constrained. However, re-
alistically, we can assume a reasonable finite upper limit for ζ
of order 10 (e.g. from loop physics it is known that the den-
sity contrastζ ≤ 10). Then we see thatζmax can become even
more constrained for small values ofζmin as long as the error
in T is small enough such that the contour of this error remains
above this upper limit at the left axisζmin = 1 (e.g. forζ ≤ 10,
if (σT/µT)2 <0.08 a much stronger upper limit forζ may be
found). For (σT/µT)2 = 0.04 there is a restricted range ofζ for
ζmin < 1.63. ζmin = 1.63 is the maximal extent of the contour
because of the asymptotic behaviour ofg(ζ) (see Fig. 6). Ifζmin
is increased beyond this value, noζmax can be excluded, and no
statements can be made on the statistical distribution ofζ.

The external Alfv́en speed,VA,e, is constrained to be within
the interval

max
{

vph,
√

ζmin VA,i,min

}

< VA,e <
√

ζmaxVA,i,max . (33)

For a fixed value ofσT/µT, using Eq. (31) and takingvph =

VA,i,min, the ratio (VA,e/VA,i,min)2 is determined byζmin, i.e.

max















(

VA,i,max

VA,i,min

)2

, ζmin















<

(

VA,e

VA,i,min

)2

<

(

VA,i,max

VA,i,min

)2

max

ζmax . (34)

We may employ again Fig. 10 to determine the interval of ad-
missible values. For (σT/µT)2 = 0.04, max(VA,i,max/VA,i,min) =
1.9885 andVA,i,max = 600 km s−1, we find the following con-
straints forVA,e. For ζmin = 1, VA,e is constrained to be exactly
equal toVA,i,max. For increasingζmin, the upper bound increases
until for ζmin = 1.63 the interval becomes 600 km s−1 < VA,e <
800 km s−1. For 1.63< ζmin ≤ 3.95, VA,e is only constrained
to be larger than 600 km s−1. For ζmin > 3.95, the lower bound
needs to be larger than

√
ζmin 300 km s−1.
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4. Conclusions

We have explored how through a statistical approach coronal
loop cross-sectional characteristics such as density contrast and
transition layer width can be seismologically constrainedusing
observations of transverse waves and oscillations.

We have investigated transverse loop oscillations, the major-
ity of which have been observed by TRACE and SDO. First,
we have produced through forward-modelling many observed
realisations of TLOs periods and damping times from sampled
values ofℓ/a and ζ. The index of the power law fit follows a
Gaussian distribution centred on an index value of one. The un-
certainty (Gaussian width) of the index strongly depends onthe
range of periods used. For a range of periods between 140 and
440s, as seen by Aschwanden et al. (2002), the uncertainty be-
comes as large as 0.5. But for a period between 50 and 3600
s, the uncertainty is only 0.14. We have demonstrated that the
observed period-damping time scaling law does provide infor-
mation about the physical damping mechanism, provided obser-
vations of TLOs are collected from as wide as possible range of
periods and provided a comparison with theory is performed in a
statistical sense. Importantly, we have assumed that the distribu-
tions of these two parameters from which we sample is the same
for all periods (and hence also loop length). We have not taken
into account the possibility of different classes of coronal loops
present within the observations. We are confident that this is a
reasonable assumption because most reported TLOs come from
similarly sized active region loops. Without this assumption and
the observed TLOs would somehow have widely different cross-
sectional structuring that also depends on period, than almost
any power law may be expected (Arregui et al. 2008).

With the full range of values forℓ/a andζmin=1, we find the
best fit as a function of the one remaining free parameter,ζmax,
equal to 3. However, the error in both the observational and the
forward-modelling of the value ofα is large. Instead, to increase
statistics, we have reduced the problem to a one-dimensional
distribution of the quality factorτ/P. For given distribution of
ℓ/a andζ we have calculated the shape of the quality factor dis-
tribution. As already noted by Goossens et al. (2008),τ/P has
a minimum value determined by (ℓ/a)max andζmax. Fitting the
observed quality-factor distribution of TLOs showed that loops
with large values ofℓ/a and ζ are not consistent with the ob-
servations. It is important to note that such loops would support
transverse oscillations with a poor quality-factor, whosetrans-
verse oscillations for typical displacement amplitudes and peri-
ods would be difficult to detect. There is an observer bias against
studying such loops. Therefore, instead of relying only on the
lower limit of observed quality factor to constrainℓ/a andζ, we
determine it by fitting the distribution curve to all observations,
and find (τ/P)min = 0.65. From the resulting relation between
ζmax and (ℓ/a)max, we see that the density contrast is only con-
strained if (ℓ/a)max is larger than 0.98, and thatζmax decreases
as a function of (ℓ/a)max until a value of approximately 3 for
(ℓ/a)max= 2. The latter value is broadly consistent with the scal-
ing law fitting. Loops with simultaneously large values ofℓ/a
and ζ, i.e. smooth and large contrasted loops, are inconsistent
with the observations. In interpreting these results we need to
bear in mind that the analytical resonant absorption equation is
strictly speaking valid only for small values ofℓ/a. This study
could be repeated using numerical solutions of the resonantab-
sorption problem, which allows for an arbitrary transitionlayer
thickness (e.g. Van Doorsselaere et al. 2004).

For the CoMP running transverse waves, we have repro-
duced the observed power ratio dependency with the frequency,

using uniform distributions forℓ/a, VA,i andζ (as for the TLOs).
In the forward modelling, it became obvious that relativelynar-
row ranges had to be used in order to fit the observed spread on
the data points. Taking a more statistically rigorous approach, we
have studied the mean and the spread on the parameterT. This
parameter contains all the statistical information of the loop.
From the fitted values and spread ofT, it was possible to con-
strain the distributions ofℓ/a, VA,i andζ. It was found that the ra-
tio of upper and lower bounds on the uniform distribution ofℓ/a
andτA,i should be less than 2.06, to comply with the statistical
properties ofT. Additionally, the distribution for the loop density
contrast could be either extremely narrow, or wide. Depending
on other physical estimates for upper limits of the density con-
trast, a severe restriction could be found for the density contrast
distribution. A similar analysis could not be made for the TLOs
because the uncertainty on the fit parameter is too large.

The statistical study of TLOs permits to determine con-
straints on the physical characteristics of coronal loops as a
whole. One of the main unanswered questions surrounding coro-
nal wave dynamics is the selective (degree of) excitation ofloops
in active regions. It is possible that the physical mechanisms that
excite these oscillations, e.g. shocks, heating, pressureimbal-
ance, are selective in for example direction or distance. But an-
other possible explanation may be formulated from the result of
(τ/P)min. It reveals that some loops may not be seen (reported)
to oscillate transversely because they have oscillations with a
quality factor too small to be detected as an oscillation by an
observer. The CoMP study reveals narrow distributions for the
statistical parameters suggest that all loops observed with CoMP
have similar properties. A rather narrow distribution for loop
density contrast is found. Perhaps our result is the consequence
of only studying one time series in one active region but it may
also reveal a strong constraint on the understanding and mod-
elling of loop physics. Are the oscillating loops a special subset
of the large ensemble of coronal loops, or do all loops have e.g.
a density contrast in a small range?

To decrease the uncertainties we need many more observa-
tions of standing and running transverse waves in as wide a range
of active regions/temperatures and periods as possible. The char-
acterisation of TLOs is a labour-intensive data-analysis process
because of the need for the detection of transverse displacements
in images. Systematic and consistent methods of analysis of
TLOs are being developed (Verwichte et al. 2009, 2010; White
& Verwichte 2012). A much larger set of observations would al-
low us to explore the existence of different sub-classes of coronal
loops, possibly linked to specific regions. Also, it would require
further coronal loop modelling and observational studies of non-
oscillating loops.
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Appendix A: Mean and variance of g(ζ)

For ζ uniformly distributedH(ζ, ζmin, ζmax), the mean and vari-
ance ofg(ζ) can be calculated analytically. The mean is found
(introducing the notation∆ζ = ζmax− ζmin),

µg(ζ) =
1
∆ζ

ζmax
∫

ζmin

g(ζ) dζ ,

=
1
∆ζ

ζmax
∫

ζmin

ζ − 1
√

ζ(ζ + 1)
dζ ,

=
1
∆ζ

[ √

ζ (ζ + 1) − 3arcsinh(
√

ζ)
]ζmax

ζmin
. (A.1)

The variance can be calculated through

σ2
g(ζ) = E[g2] − (E[g])2 = E[g2] − µ2

g(ζ) , (A.2)

whereE[.] stands for the expected value of the argument func-
tion. Forg(ζ), we find

E[g2] =
1
∆ζ

ζmax
∫

ζmin

g2(ζ) dζ ,

=
1
∆ζ

ζmax
∫

ζmin

(ζ − 1)2

ζ(ζ + 1)
dζ ,

=
1
∆ζ

[

ζ + ln (ζ) − 4 ln (ζ + 1)
]ζmax

ζmin
, (A.3)

which is combined with Eq. (A.1) to compute Eq. (A.2).
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