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ABSTRACT

Context. Observations show that transverse oscillations occur commonly in swtamad loops. The rapid damping of these waves
has been attributed to resonant absorption. The oscillation charactergsties information of the structuring of the corona. However,
self-consistent seismological methods to extract information from iishalif oscillations is limited because there are less observables
than model unknown parameters and the problem is underdetermimeefmore, it has been shown that one-to-one comparisons
of the observed scaling of period and damping times with wave dampingeké® misleading.

Aims. We aim to investigate if seismological information can be gained from thenadx$scaling laws in a statistical sense.

Methods. A statistical approach is used whereby scaling-laws are producedgrib modelling using distributions of values for
key loop cross-sectional structuring parameters. We study two typassefvations: 1) transverse loops oscillations as seen mainly
with TRACE and SDO and 2) running transverse waves seen with CoMP.

Results. We demonstrate that the observed period-damping time scaling law dmadepinformation about the physical damping
mechanism, if observations are collected from as wide as possible odpgeods and a comparison with theory is performed in a
statistical sense. The distribution of the ratio of damping time over periodheequality factor, has been derived analytically and
fitted to the observations. A minimum value for the quality factor of 0.65 le&sn found. From this, a constraint linking the ranges
of possible values for the density contrast and inhomogeneity layer #gskia obtained for transverse loop oscillations. If the layer
thickness is not constrained, then the density contrast is maximally eqidFto transverse waves seen by CoMP, it is found that the
ratio of maximum to minimum values for these two parameters has to be les2.0@ i.e. the sampled values for the layer thickness
and Alfvén travel time comes from a relatively narrow distribution.

Conclusions. Now that more and more transverse loop oscillations have been angdystadistical approach to coronal seismology
becomes possible. Using the observed data cloud restrictions in the I@opgiar space of density contrast and inhomogeneity layer
thickness are found and surprisingly for the running waves narrawitiitons for loop parameters have been found.
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1. Introduction A widely accepted explanation for the rapid damping is the
mechanism of resonant absorption where the transverseigiave
nsidered to be an Alénic kink mode (or surface Alen mode
ntzel 1979; Goossens et al. 2012) whose nature evolves,
rough a resonance at a loop layer where its frequency mstch
ge local Alfven frequency, from a global transverse loop motion
2 local mainly azimuthal motion (Ruderman & Roberts 2002;
0ossens et al. 2002). Once local, the mode cannot be oldserve

Transverse waves are pervasive in the solar corona. T
have been detected with confidence since 1998 (Aschwan
et al. 1999; Nakariakov et al. 1999) in the form of transver
loop oscillations (TLOs). To date, more than 50 TLOs ha
been reported with periods ranging between 100s and 3 ho
(e'?saflr.wé?)r(])i;eanﬁi a;;[ i?ozzbalgég%o‘%;s\?ﬁng of)?g 54 él (;{eerre\}/wecth t irectly and it then proceeds to damp dissipatively enhaige

2007; De Moortel & Brady 2007; Van Doorsselaere et al. Zooghase—mixing (or alternatively collisionlessly). Crulyat is the

; . . : ; ate of mode evolution from global to local that is observed a
Verwichte et al. 2009, 2010; Mrozek 2011; White & Verwicht . .
2012; White et al. 2012; Verwichte et al. 2012). The majoritipe tri?npéd dgaemnpc;rs]%r?ftrgzesgﬁgfmzrz?t\fgv:\gﬁ/:—r gelj)ebnsfr\;itzoizmp'
of these oscillations have been studied using EUV imageiis SLEhg oo P q y
as TRACE (Handy et al. 1999), EUBTEREO (Howard et al. P
2008) and AIASDO (Lemen et al. 2012). They are reported to Hence, besides the loop’s average Alfvspeed and mag-
damp quickly with oscillation quality factors in the rang&Q netic field strength (Nakariakov & Ofman 2001), there is the
5.4, potential for seismologically determining the loop cresstion
profile, including the density contrast, which aréidult to mea-
Tomczyk et al. (2007) demonstrated using groundsure directly (e.g. Aschwanden et al. 2003; Schmelz et 8320
based spectral measurements with the Coronal Multichanfiefzo & Reale 2010). By combining the theories for the prop-
Polarimeter (CoMP) (Tomczyk et al. 2008) that small-anuplé agation and damping of the transverse wave it is possible to
propagating transverse waves are ubiquitous in the sotanao constrain self-consistently the unknown parameters irpthb-
This result seems to be supported by the recent report ofrrgnnlem (Verwichte et al. 2006). However, for the resonant ghsor
transverse waves in coronal loops by ABDO (Mcintosh et al. tion damping model, the problem is under-determined ansl it i
2011; Wang et al. 2012). not possible to deduce both density contrast and inhomegene
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ity layer thickness independently (Arregui et al. 2007; €s#ns Table 1. Characteristics of observed TLOs
et al. 2008; Arregui & Asensio Ramos 2011).
Ofman & Aschwanden (2002) modelled the scaling rela-

tions, e.g. between damping time and period, féiedent damp- #_P(s) () L(Mm) Reference’

ing mechanisms. They found that the observed scaling rela- % ggé ggg %28 A02

tions were more compatible with phase mixing. However, it wa 3 316 500 174

pointed out by Arregui et al. (2008) that a one-to-one compar 4 277 400 204

ison between the observed scaling and the linear scalimg fro 5 272 849 162

resonant absorption inherently makes the unrealisticaggan 6 435 600 258

that all loops have the same cross-sectional structuringadt, 7 143 200 166

by allowing the cross-sectional profile to vary between &ven 8 423 800 406

they showed that the scaling from resonant absorption cgilyea 9 185 200 192

depart from linear. Thus, they concluded that scaling laesew 10 396 400 146

not suficient to distinguish damping mechanisms, because reso- 11 234 714 35&¢: 50 Ws04
12 249+ 33 920+ 360 218 V04

nant absorption can reproduce several dependencies wsieg

fully chosen distributions of equilibrium parameters. Hwer, ﬁ gggi é? ﬁg% ?88 g;g
now it becomes possible to use the inverse approach. Sii& 20 15 382+ 12 1330+ 528 233
(Aschwanden et al. 2002), the number of observations and the 15 358. 30 1030+ 570 237
range of observed periods has increased. Given the observed 17 326+45 980+400 235
scaling laws of periods and damping time, can we find informa- 18 357+ 89 1320+ 720 236

tion on the statistical distributions of equilibrium pareters of 19 567 1500 40@ 100 HO5&H07
coronal loops that exist in the solar corona? In this articevill 20 918 4200 80@ 200

show that it is possible to use statistical and forward-riodge 21 425 2300 384 VDO7
approaches to model scaling laws of loops. This statistbess- 22 436+ 4.5 2129+ 280 400+ 40

mological information on the coronal loop ensemble canpote 23 243+ 6.4 1200 400 40

tially help to distinguish between fliérent coronal loop models 24 895+2 521+8 228 DMB07 & VD09

25 452+1 473+6 228

; ; : ; : 26 630+ 30 1000+300 340+15 V09
The paper is structured in two main parts. Section 2 inves- 57 5418:5 3660:80 68050 Vi0

tigates statistically the scaling of TLOs using two applasc 58 377 500 550 VERD
Section 3 studies statistically the transverse waves sgen b
. L . 29 225+ 40 240+45 121+12 WV12
CoMP (Tomczyk et al. 2007). We discuss our findings in Sect. 30 21545 293+18 111+ 11
4. 31 213+9 251+36 132+ 13
32 216+ 27 230+23 113+11
33 520+5 735+53 396+ 40

and heating mechanisms.

2. Statistics of transverse loop oscillations 34 596+50 771+ 336 374+ 37
Since 2002, when Ofman & Aschwanden (2002) modelled 32 212+20 298+30 279+ 28
the scaling relations for standing transverse loop osidilia 36 256+22 444105 240+ 24

37 135+9 311+85 241+24

(TLOs), many more observations have been analysed. Table 1 33 115, 2 175530 159+ 16
lists 52 events of TLOs from 13 studies. Figure 1 shows the dis 39 103+ 8 242+114 132+13

tribution of damping timesr, versus oscillation period?. We 40 302+ 14 306+ 43 466+50 W12
can find a power-law relationship between those two observed 741 565+4 666+42 301+ 30 V12
quantities as 42 222+ 18 420+360 274+ 30
43 474+ 12 900+ 120 400+ 30
T=aP’, loge = 044+031, y = 094+012. (1) 44 1170+ 6 1218+48 400+ 30

. . 45 623+4 960+60 270+ 30
Under the assumption of a loop where the density drops from 46 15045 216+60 188+ 20

inner to external conditions over a thin transition laybke tes- A7 122+ 6 348+ 360 160+ 20
onant absorption rate is given by (e.g. lonson 1978; Holl&eg 48 273+ 54 468+36 171+20
Yang 1988; Goossens et al. 1992; Ruderman & Roberts 2002) 49 282+6 606+186 122+20

50 491+ 18 834+6 262+ 20
{+1 @) 51 348+7 906+ 288 238+20
-1 ’ 52 340+ 3 930+ 144 200+20

where F, ¢, a and ¢ are parameters that describe the cros§ The reference citations are listed in Fig. 1
sectional profile of the loop mass densjift). Here, we choose
a half-wavelength sinusoidally varying transition layie,

T=¢& P, &(t/al) = F(/a)™

et al. (2004) showed that it still provides a relatively aeta

o) 1 e r-a<-¢/2 extension into the regime of finite resonance layer widtisoA
Bl = L@t )+ @t -1 sin®C2] r—a< ¢/2 . Eq.(2) does not describe any transient behaviour in the agmp
p - r—as> (/2 (Pascoe et al. 2012).
3) Equation (2) shows that the resonant absorption time-scale

wherep; is the loop-axis equilibrium density andis the ratio scales linearly with period. This matches well with the alsd

of the loop-axis density over the external density, §£pi/pe. Scaling. However, as pointed out by Arregui et al. (2008e-0
For such a profileF = 2/x. Equation (2) is strictly speaking to-one comparison is problematic because Eq. (2) also dispen
only valid in the regime wheré < a, though Van Doorsselaereon¢/aandZ, which will vary between loops. We can identify the
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observed fit parameterwith £&g(¢/a, £). What possible range of with P, = 50 s andPnax = 3600 s, chosen to reflect the bias
values off/a and/ gives the best match betweerandé&g?

10000
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Fig. 1. Damping time versus period of measured TLOs. The thick line
is a power-law fit of the formr = @ P”. The parallel lines indicate con-
tours of quality factorr/P. The symbols correspond to the following E
publications reporting TLOs. A02: Aschwanden et al. (2002), WS04: F e
Wang & Solanki (2004), V04: Verwichte et al. (2004), HO5: Hori bt a L
(2005), HO7: Hori et al. (2007), VDO7: Van Doorsselaere et 200,
DMBO7: De Moortel & Brady (2007), VD09: Van Doorsselaere et al.
(2009), V09: Verwichte et al. (2009), V10: Verwichte et al. (2010)
M11: Mrozek (2011), WV12: White & Verwichte (2012), W12: White

10000

etal. (2012), V12: Verwichte et al. (2012).
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2.1. Modelling of the damping time-period scaling

In order to make a comparison between theoretical and obder
scaling, the following forward-modelling procedure is ptid.
The hidden variables are allowed to have a distribution atipl
sible values and are assumed to be independent. The dittnibu
of the thickness of the inhomogeneity layéfa, and the density

contrast/, are modelled as

d(/a)
dN

d¢

dN

= H(¢/a, (¢/@)min, ((/Dmax) »

= H(f’ Lmins é’max) s

whereH (X, Xmin, Xmax) 1S the top-hat function defined as

H (X, Xmin, Xmax) =

Alternatively, forZ, we may also use a ffeey’s probability den-

{ (Xmax — Xminrl
0

sity function,J(x), which is defined as

Inherently, the distributions do not depend on other ptajga-
rameters or on the period. Thus, we make the assumption t %
the distribution of these parameters is the same for albsife

J(X, Xmin, Xmax) = [x In(x”“'j‘x)}_l :

Xmin

Xmin < X < Xmax
X < Xmin OF X > Xmax

loops. Also, the oscillation period has a distribution

dlog,, P
dN

= H(logy, P.109; Pmax. 109: Pmin)

of observers to identify and study oscillations in the ranfe
several minutes.

There areM number of observations of TLOs. We thus sam-
ple M values from these distributions to produdesets of val-
ues (¢/a)i, &, Pi), i € [1, M]. Using Eq. (2), the corresponding
values ofr; are calculated. Figure 2 shows an example of a reali-
sation. Then, a power-law as Eq. (1) is fitted to this reabsatf
M pairs of valuesR®;, 7j) anda andy determined. This process
is repeated to produdé realisations ofr andy. The distribution
of a andy, it's mean and standard deviation, are then compared
with the observations. Figure 3 shows how the forward-nledel
distribution of the observed scaling parameterandy match
the observed values well with similar uncertainties. Theea
conclusions can be drawn when using firdg’s distribution for

l.
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Fig. 2. An example of a realisation of a set of forward-modelled set
of (P, 7;) of the same number as currently reported TLOs. The grey
circles indicate a realisation of a 1000 sets. Hé@d¢/a are sampled
uniformly from the intervals [0,4] and [0,2], respectively.

Now we wish to investigate if, by optimising the fit between
forward modelled and observed distribution, we can coimstra
the intervals of¢ and ¢/a and hence extract seismologically
information about the transverse structuring of the oestiilh
loops. Unfortunately, because the spread &f large, it is difi-
cult to constrain both hidden variables. Therefore, weaktd
fix £/ato always be sampled uniformly from the interval [0,2].
We also fix{min to be unity. Thus, the only remaining free pa-
rameter iSmax. FOr each value of,ax we compute a forward-
modelled distribution and find its scaling parameters. Fgt
shows how the forward-modelled value@¥aries as a function
of /max. Though the error bars are quite large, we can identify
the optimal valug o = 3 and that most likely lies in the range
[1,10].

2.2. The quality-factor probability density distribution

We use a second method to constrgia and¢ by considering
the distribution of the quality factor. As Fig. 2 illustratea set of
values sampled from the distributionsfifa andZ, and using Eq.
(2), leads to a non-uniform spread of values inBhe parameter
space. We derive analytically this distribution from thetdbu-
tions of £/a and/. We make use of the following relations for
trlbutlons of dimensionless quantitigsy andz where the re-
ionsy = y(x) andz = xy are monotonic:

dx d(z/x) dx

dN dN X ®)

' dx(y) dz
AN

—00
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7 = a P’, Uniformly distributed ¢ , periods between 50-3600 s
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Fig. 3. Forward modelling of power law for resonant absorption model 0 > 4 6 8 10
with uniform distributions£/a and¢ are sampled uniformly from the /P

intervals [0,2] and [0,4], respectively. The hatched region deneaéd

ues ofe less tharF/2, which Eq. (2) does not permit. Fig. 5. Distribution of quality-factorz/P, from the observations (rough,

blue distribution) and from the analytical distribution using Eq. (11)
With €/amax = 1.2 andimax = 9.5.
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Fig. 4. The mean parameter lggr as a function ofmay With i = 1 0.0
obtained fromN fits to a forward modelled sample of values of periods 1 10 100
and damping times, using the uniform distribution fga given in Eq. g

(4) and a uniform (Left) and a fleey’s (Right) distributions for as . 1
given in Egs. (4) and (6), respectively. The dashed curves bthand Fig. 6. The dependence &f*(¢) andg(¢) on.
onev variation in log,@. The horizontal long-dashed line shows the

observed value of loga bounded by its one= variation.

whereg(q) contains the details of the ranges of valueé/afand

We introduce the notatior€/) = (¢+1)/(¢-1),y = F(¢/a) "t and q Yinax
g = 7/P for the inverse Atwood number, inverse inhomogeneityg(q, (£/@)min, (/@) max £min» {max) = [— Y ] ,
scale-length and quality factor, respectively (The fumcti(¢) q a4~ Yy
is shown in Fig. 6). Equation (2) then simply reags yh. We ]
find for uniform distributions of/a ands and with
F q
dy 1 - - 1
dN y2 (y’F(f/a)max,F(f/a)mln) ’ © Ymi max((f/a)max’ h({min)) ’
dh 2 — min[——— 9 13
N = oz (0 hmad. M) o = 05— ey -
_ 2y H (y q q ) . (10) Whenis Jeirey's distributed, we find the same result as above
-2 " h(Zmin)” h(Zmax) except that the logarithmic terms ¢nare absent. Equation (12)

is simplified if we take the reasonable choicégafi, = 0 and

Using the formula for the product of two distributions (8)reduces to

the distribution for the quality factor becomes of the form

W 0@ (€12 ) = et~ I ) - 1

q o m

= < | ————= =q°¢(), (11) q(€/@)max

d —0)2 _ _

y vf oo A/ @mae— F Iq(f/ D | a9
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Note that the distribution is only physical fof P above a lower
threshold value,(/ P)min, Which occurs whergmin = Ymax Of

F h({max) (15) ..

(f/a)max ' 3 ® ’.;_f
It can easily be seen from Eq. (14) tlyahas a root at that value. \ ° - 3
For¢/aand/ taken from the broadest ranges of [0,2] ancifl,
¢ becomes constant almost everywhere, except ng&)din = °
F/2 where the distribution drops to zero. For that case thei-dist
bution scales ag(P)~2. The existence of a minimum threshold LS S
in the quality factor has been discussed by Goossens ebaB)2 ® ®

in the context of individual oscillations. of® . . .

(7/P)min =

<P(0)>..
A}

f [mHz]

100¢ Fig.8. The CoMP power ratio of downward propagating to upward
propagating waves versus the frequency (as taken from Verth et al.
2010) are displayed with red circles. A realisation from 1000 sam-
ples from the statistical distributions f&f; € [800,1000] knfs, £/a
€[0.5,1],¢ € [2.5,4] are shown as grey circles. The best fit to the obser-

vations, Eq. (21), is shown as the dashed line.

10
3. Statistics of transverse waves seen by CoMP
Let us now turn our attention to the propagating transve ese/
observed by CoMP (Tomczyk et al. 2007; MclIntosh et al. 2008),
and also by SD@IA (Mclintosh et al. 2011). We interpret the
100 0'5 1'0 1'5 2o spatial damping as attenuation due to resonant absorpfati(

et al. 2010; Terradas et al. 2010). As in the previous section
we want to perform seismology on the CoMP data in a statisti-
Fig. 7. The allowed range of/a and/ for a range of values of(P).»  Cal Sense, by fitting the data using statistical distrimgitor the
as derived using Eq. (15). The ranges exist to the left of each cute®p cross-sectional equilibrium parameters, i.e. thesitgoon-
as illustrated with the shaded area forR)min = 0.65. The thick curve trasts and the thickness of the smooth lay¢a, and the internal
represents the value gfax as a function of {/a)max that fits best the ob- Alfv én transit timera,;.
served quality factor distribu’tior_]. A un_iforr_n distribution 4ﬁ_1as been The data we study is displayed in Fig. 2 of Verth et al. (2010)
assumded- .Thle use of aﬁﬂeé’s qlzt'nbutlonhmstelad would ylelg an al- (3150 as red circles in Fig. 8). They show the ratio of dowmvar
g?fﬁé fﬁmﬁ tﬁgr:;'a-:—le;ft indicates the values/@@imax anddmax  ronagating wave power (measured as Doppler shifts) wih th
' upward propagating wave power versus the wave frequeney. Th
data is obtained from the- w diagram for CoMP Doppler shifts
From inspection of the quality factor values of the observaMcIntosh et al. 2008). In the work of Verth et al. (2010),st i
tions in Fig. 1, one may deduce that expect for one all obsé@xplained that the frequency-dependent power ratio caify eas
vations haver/P > 1 (There is one observation with a smalleP€ explained by resonant absorption. In contrast to theiqusv
quality factor but the damping rate has a high uncertaingy) vSection with the standing transverse oscillations, theplagfor
Doorsselaere et al. 2009). However, an estimatergP),, these driven waves is acting as the waves travel along tige loo
based upon the observed lower limitdfP relies on only a few rather than atemporal damping of the standing transverseswa
measurements. Instead, we make use of all measurements and he waves travel at the phase speegl, which equals the
fit the observed distribution with Eq. (11) with an arbitramy- Kink speed (Edwin & Roberts 1983) in the thin loop limit. Ireth
plitude and with fixed values of (@)min = 0 andZmin = 1. As a  Z€ro plasmas limit, vpn is thus given by
function of ¢¢/a)max, We determine from the fit the best value of
{max- Figure 7 shows this fit as well as the contoursf)min, 2 %
calculated from Eq. (15). It approximately follows the cmumt Voh = By[————~ = Vaiy ;o7 (7)
of constant £/P)min = 0.65. Overall, the best fit is fat/a = 1.2 Ho(pi + pe) {+

and = 9.5 (illustrated in Fig. 5). Then, using Eqg. (15) and . , .
the égﬁje Off/lg)min — 0.65. we?ind)the constrair?ts g. (15) where we have defineW,; as the loop Alfien speed. Using

Eqg. (17), we can now compute the frequency dependence of the

(€/@)max + 0.98 power ratio (using Eq. 7 in Verth et al. 2010):
(¢/@)max—0.98 Poul)
0.98 < (£/@)max < 2. (16) <P(f)>ratio= ,;“t(f) exp(rf), (18)
in

For ((/@)max = 2, ¢ is constrained to lie in the interval [1,2.9].

This result is consistent with what was found in the previouith

subsection. Figure 7 shows that loops with simultaneoastyel

values off/a and/, i.e. smooth and large contrasted loops, areT(g/& £ VA = v2L 3 VoL 1 t/a) -1 .19

not consistent with the observations. phéE T F W,i( (+1)



E. Verwichte et al.: Statistical seismology of transverse waves in the smiana

where the previously computed expression for the phaselspadarger value oPy/Pin, = 0.91, but as this lies within one sigma
Vpn has been used, and the expressior¢foirom Eq. (2) is in- of our value, there is statistically no discrepancy.

serted. In the remainder of the manuscript we take the measur Let us now consider as a statistical distribution, being the
ment lengthL = 250 Mm as in Tomczyk & Mcintosh (2009). Theproduct of the independent statistical variab\és;, £/a and

factorT controls the rate of change of the power ratio as a fung¢/)=(s — 1)/ +/Z(¢ + 1). Similarly as in Sect. 2, an analytical
tion of frequency. It is a function of the loop parametéra, { distribution could be calculated but becadsdepends on three
andVa i, which are assumed to be fundamental properties of thgtistical variables and the dependency as more elaborate,
observed coronal loops. We wish to constrain the valuesesith this becomes impractical. Instead, we aim to constrainrttie-i
variables through statistical means, only for the specdfaps. pendent statistical variables using the fit. Since we asghate

Note that the value of these vari_ables maﬁm‘ifor other loops Vv, ;, £/a andg(?) are independent, it is possible to write
(especiallyva ;) and an over-arching statistical study would have

to be conducted using many (currently non-existing) ColkB-l /2
observations to explore statistical constraintg tamand{ for all ZL HT T HaNag Hejaly@) (22)
loops, such has been done in Sect. 2. We consider the thiiee vap

ables as independent statistical variables and each offthera 0% = (Ut 00 Wl ot 00 ) Wt Th0) = Ko He ek
uniform distribution. To the uniform distributions féya andZ, ) 5 ) > ) s
described in Eg. (4), we add a third uniform distribution¥ar;: = O Ta%g0) T HIvA T ea%gi) T T 1yva; Heralg)
2 2 2 2 2 2 2 2 2
dVa, t T Terabo) t Hv Bea%o@) t Hava, T eakye)
an = VA Vaimin Vaima) - (20) TN (23)

With these variables, we can calculate the phase speed Afidthe terms on the right hand side of Eq. (23) are positive.
power-ratio of the transverse waves using Egs. (17) and Tb8) By considering only the last term and dividing Eq. (23) by the
obtain Fig. 8, we have generated 100fatient loops, and multi- square of Eq. (22), we find

plied by a linear function in the frequency domdito guarantee ) )

an even spread across the spectrum. For the sake of simplicit 0,04 = 4900 - (o) o 1)V, (24)

we have taken the upwadbwnward ratioPy/Pi, = 1, even ' 3502 L e |

though Verth et al. (2010) founByy/Pi, = 0.91 from a fit to

the data. A good fit between the data and the statistical lodpgcause positive terms have been neglected in the rightdided
is obtained for¢/a € [0.5,1], £ € [2.5,4] andVa; € [800,1000] of Eq. (23). Considering only the second and third to laghter
kmy/s. These fitting parameters above are not the only oneswe can derive that

yield good results. Other combinations may yield similgdpd 2 2

results. _ (‘T”a) <004, (M) <004, (25)

In Fig. 8, it can be observed that the spread of the statistica Heja Hy(o)
points increases with increasing frequency. Also, wifies 0,
the spread disappears and the power ratio becomes exaitjly uffut 8/so
This is a consequence of the exponential damping by resonant v 2 (a2 (O \2
absorption. Indeed, when taking the linfit— 0 in Eq. 19, the ( / A") + (ﬂ) + (ﬂ) < 0.04. (26)
argument goes exactly to 0. The increasing spread withasere Hera Hg(0)
ing frequency can also be understood in similar terms. Fer t
sake of simplicity, let's assume that~ N(u, o?) has a Gaussian
distribution with mearnu and spreadr. From elementary statis-
tics, we learn thal' f ~ N(fu, f20%), resulting in a larger spread
for larger frequencies. Also, the mean will increase liheaith
f, which is observed in Fig. 8 as well.

In the end, only the statistical propertiesfletermine the
fitting with the observed data points. Indeed, one may irsge
the spread iV ; by reducing the spread 6fa while keeping the
average of their product constant. Likewise, the averadeél
transit time can be decreased by increagifay Also (as can be 2 2
seen in Fig. 6), whed is increased, the resultirigis naturally (W/a) _ }((é’/a)max— (f/a)m‘“) <004, (27)
distributed more narrowly, allowing for a wider spread/y;. Heja 3\ (¢/@min + (£/@)max

We now take a more statistically rigorous approach. To gaj : '
insight on the distribution of, we calculate the regression ofH? using that {/)max > (¢/&)min,
the logarithm of Eq. (18), and we find that

H1/Vaj

tfhese equations prove that the first four terms in Eq. (23bean
neglected compared with the last three terms.

The relations (24)-(25) contain information on the statis-
tical distribution ofVa i, £/a and{. As we have done in the
forward modelling, we shall considei/a as uniformly dis-
tributedH(¢/a, (€/@)min, (£/@)max). From statistics, we know that
for this distribution the mean and variance are equal/g =
A/ min + (L/@)ma) /2 ando?,, = ((£/@)max— (£/@)min)?/12, Te-
spectively. Using Eg. (24), we find

(£/@)max — (€/@)min < Vo012 =

<P(f)>maio= be' ", Inb=-0.24+0.17, T =350+ 70s, (€/@)min + (£/@)max
(21) 1+ 012 B
The uncertainties are calculated using the vertical spoéue (€/@)max < VoD m(f/a)min = 206 (¢/@)min - (28)

residuesp_p, = 0.54) as an error estimate on the initial mea-

surements and using the method as detailed in Chapter 15.2'bis leaves a rather narrow range fge. If it is expected from
Press et al. (2007). This produces a mgar= 350 s, and stan- physical reasons or loop modelling that the inhomogenaitg
dard deviatiortr% = 4900 £ of the distributionT. From Inb =  covers the whole loop/(a)max=2, then the lower boundary for
-0.24, we estimat®,/ P, = 0.79. Verth et al. (2010) had foundthat length scale if{a@)min > 0.97.
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Fig. 9. Uncertainty interval oVa i max/Va.imin @S @ function of the rela-
tive variance ¢ /ur)?, derived from Eq. (31) The interval given by Eq.
(32) for (or/ur)? = 0.04 is indicated.

Also assuming a homogeneous distributiorVaf, we can cal-

culate the meap,,y,, (introducing the notationVa = Va i max— 1 10
VA imin) @S Con
1 1 VA-'vmaXVA 1 Va i max Fig. 10. Contours of constant values af{,)/ugc)* @s a function of
v, = E[—] = 2 - = , (29)  Zmin @andZmax. The dashed line is the bisector and the hatched region in-
Vi AV Va AVa Vaimin dicates unphysical values &f.x. The region in parameter space where

VA,i min

(O’g(g)/ﬂg(())z < 0.04 is shaded.

whereE[ ] is the expected value of the argument function. The
variance is computed as

1
2 —
0—1/VA,| =E [V—z}—E
A

Lmin-{max- FOT (r/ur)? = 0.04, the valid range of values i,
1 1P 1 ) andZmax that are consistent with the observations are indicated
W} —Hin,, - (30) as a shaded region. The smaller the errofjrihe smaller the
! admissible region becomes (i.e. contours for smaller sadi®@
more to the right). For all values of the error afagh, {max —
is not excluded and thus is never constrained. However, re-

VA,i,minVA,i,max

Thus, we find the condition foVa ; min andVa j max:

v \2 (AVa)? 1 alistically, we can assume a reasonable finite upper limitfo
0.04 > ( / A") = A o~ 1. (31) of order 10 (e.g. from loop physics it is known that the den-
H1/Vaj VaiminVAa imax |2 | Yaimex sity contrastz < 10). Then we see that,ax can become even

A.i,min

more constrained for small values &fi, as long as the error
This transcendental equation can be solved numerically forT is small enough such that the contour of this error remains
Vaimax/Vaimin, and the result is shown in Fig. 9. Foﬁr/,u% above this upper limit at the left axig,n = 1 (e.g. for{ < 10,

=0.04, we find if (or/ut)? <0.08 a much stronger upper limit fgr may be
Vv found). For ¢+/ur)? = 0.04 there is a restricted range ofor

1 < Almax 4 9885, (32) ¢min < 163.min = 1.63 is the maximal extent of the contour
Aimin because of the asymptotic behavioug@f) (see Fig. 6). #min

is increased beyond this value, tig.x can be excluded, and no
'Statements can be made on the statistical distributign of

The external Alfen speedya e, is constrained to be within
interval

which shows that the loop Alen speed is constrained even na
rower than//a.

Interestingly, Tomczyk & Mclntosh (2009) found a phaS@ne
speed of 600 km3 for the propagating transverse waves. In

our current model (i.e. an overdense loop experiencing-reso axly, [V b < Vo < AfT\a 33
nant damping of the waves), this value is an upper limit fer th Vo Vemin Vaimin] < Ve fmaxVaimax - (33)

Alfv én speed in the 100/ i max = 600 km s*. This leads t0 @ (. 5 fixed value ofr - - _
S b s 1 r/pr, using Eq. (31) and takingpn =
minimum value for the Alfén speed oWajmin = 300 km s+, V1 miny the ratio Wa e/ Va i min)? is determined by, i.e.

in order to still be able to explain the small spread in the ob-
served power ratio. Such small values are conceivable #irce 2 2 2
VA,i,max VA,e VA,i,max
»dmin g < < Imax - (34)
A.i,min VA,i,min VA,i,min max

magnetic field strength in a loop arcade is expected to deereap,ax
with loop length. Alfen speeds in the range of 300-400 kmh s
have been reported for loops with lengths larger than 650 Mm
(Verwichte et al. 2010). We may employ again Fig. 10 to determine the interval of ad-
To find estimates for the distribution of parametemore missible values. Forotr/ur)? = 0.04, max{aimax/Vaimin) =
effort has to be made, because it occurs through the functib®885 andVa imax = 600 km s?, we find the following con-
g(£). Let us as before assume thats uniformly distributed straints forVa e. For {min = 1, Vae is constrained to be exactly
H(Z, Zmin, {max)- The mean and variance gf{) can be calcu- equal toVa;max FOr increasin@gmin, the upper bound increases
lated analytically, see appendix A. Fixidgin, we can compute until for Zmin = 1.63 the interval becomes 600 kKmts< Ve <
the maximally allowed/max to satisfy Eq. (25). The results of 800 km s*. For 1.63< min < 3.95,Va, is only constrained
this computation are shown in Fig. 10 where contours of cote be larger than 600 knts For Zmin, > 3.95, the lower bound
stant values of q)/1g)? are shown in the parameter spaceeeds to be larger thagZmin 300 km s
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4. Conclusions using uniform distributions fof/a, Va; and{ (as for the TLOSs).
o In the forward modelling, it became obvious that relativear-

We have explored how through a statistical approach coropgly ranges had to be used in order to fit the observed spread on
loop cross-sectional characteristics such as densityasirind tne data points. Taking a more statistically rigorous agphowe
transition layer width can be seismologically constrainsthg pave studied the mean and the spread on the parafetérs
observations of transverse waves and oscillations. parameter contains all the statistical information of thepl.

We have investigated transverse loop oscillations, themajFrom the fitted values and spreadTfit was possible to con-
ity of which have been observed by TRACE and SDO. Firsétrain the distributions df/a, Va; andZ. It was found that the ra-
we have produced through forward-modelling many observed of upper and lower bounds on the uniform distributior (e
realisations of TLOs periods and damping times from sample@ddr,; should be less than 2.06, to comply with the statistical
values of¢/a and{. The index of the power law fit follows a properties of. Additionally, the distribution for the loop density
Gaussian distribution centred on an index value of one. The wontrast could be either extremely narrow, or wide. Depagndi
certainty (Gaussian width) of the index strongly dependghen on other physical estimates for upper limits of the density-c
range of periods used. For a range of periods between 140 argt, a severe restriction could be found for the densityrest
440s, as seen by Aschwanden et al. (2002), the uncertainty §igtribution. A similar analysis could not be made for theO&.
comes as large as 0.5. But for a period between 50 and 3@¥tause the uncertainty on the fit parameter is too large.
s, the uncertainty is only 0.14. We have demonstrated tigat th The statistical study of TLOs permits to determine con-
observed period-damping time scaling law does providerinfastraints on the physical characteristics of coronal loopsaa
mation about the physical damping mechanism, providedrebsghole. One of the main unanswered questions surroundirg cor
vations of TLOs are collected from as wide as possible rafigeral wave dynamics is the selective (degree of) excitatidoags
periods and provided a comparison with theory is performe i in active regions. It is possible that the physical mechasithat
statistical sense. Importantly, we have assumed that shetdi-  excite these oscillations, e.g. shocks, heating, pressual-
tions of these two parameters from which we sample is the sagice, are selective in for example direction or distancé.aBu
for all periods (and hence also loop length). We have notrtakgther possible explanation may be formulated from the tesul
into account the possibility of fierent classes of coronal l00ps(r/P),,i.. It reveals that some loops may not be seen (reported)
present within the observations. We are confident that ¢h& ito oscillate transversely because they have oscillatioitls av
reasonable assumption because most reported TLOs come fepmlity factor too small to be detected as an oscillation by a
similarly sized active region loops. Without this assurptand observer. The CoMP study reveals narrow distributions lier t
the observed TLOs would somehow have wideljetent cross- statistical parameters suggest that all loops observéd@aMP
sectional structuring that also depends on period, thamstimhave similar properties. A rather narrow distribution foop
any power law may be expected (Arregui et al. 2008). density contrast is found. Perhaps our result is the corsegu

With the full range of values fof/a and/min=1, we find the of only studying one time series in one active region but iyma
best fit as a function of the one remaining free paraméggk, also reveal a strong constraint on the understanding and mod
equal to 3. However, the error in both the observational &ed telling of loop physics. Are the oscillating loops a speciabset
forward-modelling of the value af is large. Instead, to increaseof the large ensemble of coronal loops, or do all loops haye e.
statistics, we have reduced the problem to a one-dimerisioaalensity contrast in a small range?
distribution of the quality factot/P. For given distribution of To decrease the uncertainties we need many more observa-
¢/aand{ we have calculated the shape of the quality factor diiens of standing and running transverse waves in as widegera
tribution. As already noted by Goossens et al. (2008, has of active regiondemperatures and periods as possible. The char-
a minimum value determined by /@)max andmax. Fitting the acterisation of TLOs is a labour-intensive data-analysie@ss
observed quality-factor distribution of TLOs showed th@igds because of the need for the detection of transverse disptts
with large values of /a and{ are not consistent with the ob-in images. Systematic and consistent methods of analysis of
servations. It is important to note that such loops wouldpsup TLOs are being developed (Verwichte et al. 2009, 2010; White
transverse oscillations with a poor quality-factor, whasms- & Verwichte 2012). A much larger set of observations would al
verse oscillations for typical displacement amplituded peri- low us to explore the existence ofidirent sub-classes of coronal
ods would be dificult to detect. There is an observer bias againkiops, possibly linked to specific regions. Also, it woulduée
studying such loops. Therefore, instead of relying only twa t further coronal loop modelling and observational studfasom-
lower limit of observed quality factor to constrafpia andZ, we  oscillating loops.
determine it by fitting the distribution curve to all obsetigas, Acknowledgements
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bear in mind that the analytical resonant absorption equasi dentship.

strictly speaking valid only for small values éfa. This study

could be repeated using numerical solutions of the resatant
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Appendix A: Mean and variance of g({)

For ¢ uniformly distributedH (¢, {min, {max), the mean and vari-
ance ofg(¢) can be calculated analytically. The mean is found
(introducing the notatioA! = Zmax — {min),

{max
1
HoO = 77 f 9(0)ds ,
Lmin

,(max

1 -1

) I+ D
A_lg [Ve@+1)- 3arcsinh(\/Z)E:: : (A1)

a,



