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ABSTRACT

The damping of slow magnetoacoustic coronal loop oscillations by shock dis-

sipation is investigated. Observations of large amplitude slow mode observations

by SUMER show a clear dependency of the damping rate on the oscillation ampli-

tude. Fully nonlinear MHD simulations of slow mode oscillations in the presence

of thermal conduction are performed that show that shock dissipation is an im-

portant damping mechanism at large amplitudes, which enhances the damping

rate by up to 50% above the rate given by thermal conduction alone. A compari-

son between the numerical simulations and the SUMER observations shows that,

although the shock dissipation model can indeed produce an enhanced damping

rate that is function of the oscillation amplitude, the found dependency is not as

strong as that for the observations, even after considering observational correc-

tions and the inclusion of enhanced linear dissipation.

Subject headings: plasmas — Sun:corona — Sun:oscillations — waves

1. Introduction

Magnetohydrodynamic (MHD) waves are ubiquitous in the solar corona as demonstrated

by the numerous observations of waves in various quite and active coronal structures collected

during the past decade (e.g. DeForest & Gurman 1998; Aschwanden et al. 1999; Nakariakov

et al. 1999; Verwichte et al. 2005; Foullon et al. 2005), and recently with new instruments

(Tomczyk et al. 2007; Okamoto et al. 2007; Doschek et al. 2007). The signatures of coronal

MHD waves reveal otherwise hidden physical processes acting in the corona. As such they

can be used to constrain theoretical models and to indirectly measure coronal quantities

such as the local magnetic field strength through the application of the technique of MHD

coronal seismology (for a review see e.g. Nakariakov & Verwichte 2005).
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In particular, slow magnetoacoustic waves have been observed as upwardly propagating

wave trains in coronal plumes and loops in polarimeter, imaging and spectral data, (e.g.

Berghmans & Clette 1999; DeMoortel et al. 2000) and as standing waves (oscillations) in

hot coronal loops in spectral data from the Solar Ultraviolet Measurements of Emitted

Radiation (SUMER) instrument on SoHO (Kliem et al. 2002; Wang et al. 2002) and the

Bragg Crystal Spectrometer (BCS) on Yohkoh (Mariska 2005).

In spectral data the slow mode oscillations were detected as line-of-sight velocity vari-

ations. Slow mode osillations are accompanied by intensity variations that are a quarter

out of phase in time with respect to the velocity variations (Wang et al. 2003a). However,

intensity variations have been observed in only a few of the reported cases. This may be

explained in two ways. Firstly, the fundamental slow mode has a density perturbation that

is anti-symmetric with respect to the loop top. This implies for BCS, which is a full-disk

imager, that the total density variation integrated along the entire loop is equal to zero.

Finite density variations can only be detected if the loop is partially occulted by the limb.

Furthermore, at the loop location where the velocity perturbation is the largest, the density

perturbation of the mode has a node and is small. Therefore, for SUMER, which measures

along a one-dimensional slit that crosses the oscillating loop, measuring simultaneously a

significant velocity and intensity variation is not guaranteed. Secondly, some of the reported

oscillations when only observed as velocity variations, may not be slow but fast magnetoa-

coustic kink modes instead, especially when the oscillation characteristics resemble those of

transverse loop oscillations observed by TRACE.

These waves have periods of about 2-7 mins and relative density amplitudes of typically

less than 5 %. SUMER oscillations, observed mainly in a bandpass sensitive to 6.3 MK hot

plasma, have periods and decay times in the ranges of 7-30 and 6-37 mins, respectively (Wang

et al. 2003b). Various physical damping mechanisms have been investigated (see Nakariakov

& Verwichte 2005,and references therein) and thermal conduction has been found to have

the strongest effect. However, when the wave amplitude is large nonlinear effects may also be

important. Although the observed slow propagating wave trains and BCS oscillations have

velocity amplitudes typically less than 5% sonic Mach and can therefore be considered linear,

SUMER oscillations have much larger velocity amplitudes up to 70% Mach. Figure 1 shows

the observed damping times as a function of the periods. The SUMER data set has been

split into two subsets: 30 events for which the Mach number is less or equal to 0.2 and 24

events for which it is larger than 0.2. The damping times of both subsets scale approximately

linearly with the period (Ofman & Wang 2002). However, the large amplitude subset has a

damping time 1.5-2.0 times shorter than the small amplitude subset. There is a tendency

for larger amplitude oscillations to have shorter damping times. This is a clear indication

that nonlinear effects are influencing the damping rate of the SUMER oscillations. One of
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the possible nonlinear mechanisms is shock formation and dissipation. Indeed, Haynes et al.

(2008) showed numerically that in the absence of thermal conduction, large amplitude slow

mode oscillations still damp rapidly due to shock dissipation. This paper investigates for the

first time the role of shock dissipation in the damping of slow mode oscillations in coronal

loops, in the presence of thermal conduction.

This paper is structured as follows. In Sect. 2 the basic theory of the shock dissipation

mechanism for one-dimensional acoustics is briefly introduced. In Sect. 3 the numerical

simulations of nonlinear slow mode oscillations in the presence of thermal conduction are

presented. In Sect. 4, the theoretical results are compared with the observed characteristics

of SUMER oscillations. Finally, in Sect. 5 the main findings are discussed.

2. Dissipation model

Long wavelength slow magnetoacoustic oscillations in uniform coronal loops are basi-

cally longitudinal modes with little dispersion, and for typical coronal conditions have a

phase speed less than 10% below the sound speed Cs. Therefore, the slow mode can be

modelled as two counter-propagating one-dimensional sound waves along the magnetic field

with frequency ω and wave number k. The effects of dissipation by thermal conduction

and shocks are initially discussed separately. The combined effect of the two dissipation

mechanisms is treated numerically and discussed later.

In the solar corona, parallel electron thermal conduction and to a lesser extend viscosity

and resistivity, are important dissipative processes for slow mode oscillations (e.g. DeMoor-

tel & Hood 2003). The dispersion relation for sound waves that includes linear thermal

conduction is a cubic equation in ω, i.e.

ω3 + iηCskω2 − C2
s k

2ω − iηC3
s k

3/γ = 0 , (1)

where η = γ(γ − 1)Tkκ‖/ρC3
s with κ‖ the Braginskii parallel electron thermal conduction,

which is given as κ‖ = κoT
5/2 Wm−1K−1. The parameter κo = 10−11 is a function of

fundamental constants, the ion charge state (taken to be unity) and the Coulomb logarithm

(a weak function of density and temperature, assumed constant) (Braginskii 1965). The

damping rate is given by the imaginary part of the relevant root. For a typical coronal loop

of length L = 200 Mm, density ρ = 10−12 kgm−3 and temperature T = 1.0 MK, η = 0.05 ¿ 1.

In that case, thermal conduction only weakly affects the wave solution and an approximate

solution may be used, i.e. τlin ≈ 2ρC2
s /(γ − 1)2Tk2κ‖. However, for the same coronal loop

at a temperature of 6 MK, η = 1.6 and the full cubic equation has to be solved. This means

that the thermal conduction damping time τlin of SUMER oscillations is of the same order



– 4 –

as the oscillation period Plin and that the period itself is substantially modified by thermal

conduction.

It is well-known that in the limit of zero dissipation large amplitude sound waves form

shocks. The relevant results are briefly repeated here (see also sections 101 and 102 of

Landau & Lifshitz 1959). The velocity of a polytropic simple sound wave is described by the

functional

V = F

[
x−

(
±Cs +

1

2
(γ + 1)V

)
t

]
, (2)

where Cs is the speed of sound and γ is the the ratio of specific heats, taken to be 5/3. The

functional V (t=0) = F (x) describes the original shape of the wave. Here, F (x) = V0 sin(kx)

where k = nπ/L with n the harmonic wave number and L the loop length. A discontinuity

will have formed when ∂V/∂x becomes infinite locally for the first time. This occurs when

tsf =
P

(γ + 1) πM0

, (3)

with P the wave period and M0 = V0/Cs the wave amplitude Mach number. Once a shock

is formed, the wave shape will resemble a sawtooth. The part of the wave in front (behind)

of the shock moves slower (faster) than the shock and will advect into (be caught by) the

shock. At the shock wave energy is converted into thermal energy. During this process the

wavelength remains the same. This leads to the temporal evolution of the velocity amplitude,

taking into account the shock formation time, as

V (t) =
V0

1 + H(t− tsf)(t− tsf)/τsd

, (4)

with

τsd =
P

(γ + 1) M0

, (5)

and where H(x) is the Heaviside function.

What is the effect of combining thermal conduction and shock dissipation? Weakly

dissipative and nonlinear effects for a sound wave naturally leads to the study of the non-

linear Burgers equation (Whitham 1927), which supports shocks in the limit of vanishing

dissipation. Including the effects of gravitational stratification (Nakariakov et al. 2000) or

variations in loop cross-section (Verwichte et al. 2001) leads to a modified Burgers equa-

tion with an additional geometrical term. However, because the role of thermal conduction

cannot be considered weak, we prefer to model the wave behaviour numerically.
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3. Numerical simulations

Numerical simulations of slow magnetoacoustic oscillations were performed using the

code Lare (Arber et al. 2001) which numerically integrates the fully nonlinear non-ideal MHD

equations in normalised, Lagrangian form. Braginskii parallel electron thermal conduction as

defined earlier has been included. Due to the severe numerical stability constraint imposed

by diffusive terms, i.e. time step must vary as cell size squared, the thermal conduction

term in the energy equation is treated implicitly. The advective/compressive terms are

handled explicitly as described in Arber et al. (2001). Reflecting boundary conditions have

been used with zero thermal flux through the boundaries. The numerical simulations have

been performed with 128 grid points. Selected simulations with a larger resolution of 1024

grid points have been performed to verify convergence. The temporal evolution of a slow

magnetoacoustic oscillation in one dimension is studied on a uniform loop of length 200

Mm, density 10−12 kgm−3 and temperature 6.3 MK. Initially the velocity perturbation of a

fundamental slow mode is set up, i.e. V (x) = M0 Cs sin(πx/L).

First, simulations have been performed without thermal conduction to show the shock

dissipation mechanism by setting κo = 0. Figure 2 shows the temporal evolution of the mode

velocity at the loop top for various velocity amplitudes. The damping is solely governed by

shock dissipation. The oscillation envelope follows Eq. (4), which is shown as dotted lines

in the figure. The small discrepancies between the analytical oscillation envelope and the

numerical oscillation profile are due to the details of the shocked standing wave profile.

For comparison, the velocity profile for a small (linear) amplitude oscillation with thermal

conduction is overplotted. It can be seen that for Mach numberd above approximately 0.5,

shock dissipation damps the oscillation at least as strongly as thermal conduction. However,

the presence of thermal conduction will influence the shock dissipation rate.

Shock dissipation will still occur in the presence of thermal conduction. Instead of an

infinitely thin shock, a finite-sized dissipation region is formed into which the wave field is

advected and converted into thermal energy. Before the shock structure is formed, thermal

conduction is the only dissipation mechanism. Hence, the wave amplitude decreases initially

exponentially. Nonlinearity will still steepen the velocity profile into a shock, but because

the time for the shock to form is a function of wave amplitude, this is delayed in comparison

with the case without thermal conduction. The amount of delay itself will be a function of

the initial wave amplitude.

The results of the numerical simulation with thermal conduction (setting κo = 10−11) are

as follows. Figure 3 shows that the velocity profile along the loop steepens nonlinearly to form

a shock. The shock is non-stationary, bouncing back and forth in the loop. This is because

the shock is the superposition of the shocks of the two counter-propagating slow waves.
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Figure 4 shows the temporal evolution of the mode velocity at the loop top for various velocity

amplitudes with thermal conduction included. Especially for larger velocity amplitudes, it is

clear from comparing velocity profile for a small (linear) amplitude oscillation with thermal

conduction, that the damping rate of the mode exceeds that from linear theory.

Figure 5 shows the inverse quality factor P/τ as a function of Mach number. The

period and damping times are calculated from a fit of an exponentially decaying cosine to

the numerical time profile at a fixed spatial location. At small Mach number, the quality

factor tends as expected to the linear damping due to thermal conduction. The inverse

quality factor grows with the Mach number up to 50% above the linear case. Also, for large

Mach numbers, nonlinearity is the strongest damping mechanism. This can be seen by the

decreasing difference between P/τ for the cases with and without thermal conduction. Also,

the combined effect of nonlinearity and thermal conduction is less than the superposition of

the two separate damping rates, by about 30%. One reason for this is the earlier discussed

delay of shock formation due to thermal conduction. Finally, the damping rate is a function

of location along the loop due to the non-harmonic profile. However, this introduces a

difference of less than 10%.

4. Comparison with SUMER observations

Wang et al. (2003b) studied 54 events of slow magnetoacoustic loop oscillations using

SUMER. The observed decay time is characterised by an e-folding time τ . Wang et al.

(2003b) reported for each event the maximum Doppler velocity and the Doppler velocity

amplitude of a fitted damped oscillation. The latter quantity is used here as it better

represents the whole oscillation time interval rather than only the start. However, we visually

re-inspected the large amplitude events through the plots provides by Wang et al. (2003b),

and have concluded that for six events (4C, 11B, 15A, 15C, 19A and 19B) the reported fitted

amplitude grosely overestimates the observed oscillation velocity amplitude.

Figure 6 shows the inverse quality factor P/τ as a function of Mach number. If the

damping was due to linear processes, then there should be no correlation. The observations

shows that the inverse quality factor grows linearly strongly with Mach number with a slope

of 2.9± 0.3. However, because the oscillations are not necessarily measured at the loop tops

where the oscillation velocity is the largest, the measured Mach number may be underesti-

mated. Therefore, the observational slope can be smaller in reality. We estimate by how much

the the slope could be reduced as follows. With uniform sampling of loop locations, the aver-

age measured velocity amplitude for a linear oscillation is M0Cs < sin(πx/L) >=M0Cs2/π.

The loop top velocity amplitude is then estimated to be on average by a factor π/2 larger
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than the measured amplitude. This factor is strictly speaking only valid for a pure harmonic

oscillation where the standing velocity profile does not change with position. However, it

remains a reasonable approximation for the first stage of the nonlinear oscillations, when the

shock structure has not yet formed. Hence, this effect may account for the slope of the fit

to be lowered at most to a value of 1.8± 0.2.

The horizontal dashed line presents the inverse quality factor Plin/τlin for a fundamental

slow mode oscillation in a coronal loop with length, density and temperature as used in the

above described numerical simulations. For a realistic range of loop lengths and densities,

with the temperature fixed at 6.3 MK gives an inverse quality factors ranging between 0.5

and 0.9. The observed values of P/τ at low Mach numbers fall in that range. However,

the addition of the effects of viscosity, radiative losses and gravitational stratification may

increase the inverse quality factor by approximately another 20% (Mendoza-Briceno et al.

2004; Bradshaw & Erdélyi 2008). From this we confirm that thermal conduction is the main

damping mechanism for small amplitude coronal slow magnetoacoustic waves.

The effect of shock dissipation is to make the inverse quality factor grow with Mach

number above the level of linear dissipation. Figure 6 shows that the inverse quality factor

from the numerical simulations underestimates the observational result. The disparity is not

as large if taking into account the above discussed reduced observational slope and enhanced

linear dissipation. However, there is still a clear difference between the observations and the

theoretical model. The numerical simulations have also been repeated for coronal loops of

100 Mm length or 8 MK temperature. The linear dissipation rate was found to be lower

(Plin/τlin ≈ 0.5)), but the nonlinear behaviour was found to be similar.

5. Conclusions

The SUMER observations independently indicate that nonlinear effects are strongly

influencing the damping of large amplitude slow magnetacoustic loop oscillations (see e.g.

Fig. 1). Therefore, for large amplitude slow mode oscillations, linear processes such as

thermal conduction are not sufficient to explain the observations. We have investigated

the effect of shock formation and dissipation in a one-dimensional model of a slow mode

oscillation is a homogeneous loop in the presence of thermal conduction. Because at the large

temperature sampled by SUMER the effect of thermal conduction on the mode behaviour

cannot be considered weak, a fully nonlinear numerical approach has been favoured above an

analytical approach. The numerical simulations can indeed produce an enhanced damping

rate that is function of the oscillation amplitude, and which is up to 50% larger than given

by thermal conduction alone. However, the found dependency is not as strong as that
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for the observations, even after considering corrections for observational sampling and the

inclusion of enhanced linear dissipation and gravitational stratification. Also, contrary to

the simulations, the SUMER observations show smooth velocity time profiles without major

discontinuities. This may be due to the neglect in the modelling of the effect of transverse

loop structuring on the shock structure, and its subsequent observational signature.

The investigation of nonlinear slow magnetoacoustic oscillations in coronal loops may be

extended to explicitely include effects such as viscosity, gravitational stratification (Nakari-

akov et al. 2000), radiative losses (Nakariakov et al. 2004; Bradshaw & Erdélyi 2008),

loop cross-section (Verwichte et al. 2001; DeMoortel & Hood 2004), transverse structuring

(Voitenko et al. 2005), excitation (Nakariakov et al. 2004) and curvature (Verwichte et al.

2006). Furthermore, more observational examples of large amplitude slow mode oscillations

are required to confirm their true identity and the trend observed by SUMER, using for

example the EUV imaging spectrometer and X-ray/EUV telescope on Hinode.
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Fig. 1.— Observed damping time versus period of the SUMER events studied by Wang

et al. (2003b). The size of the symbol circles is related to the Mach number of the velocity

amplitude. The two dashed lines are least-square fits of the events with velocity amplitudes

V0 ≤ 0.2Cs (top) and V0 > 0.2Cs (bottom). The value of the slope is indicated.
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Fig. 2.— Temporal evolution of the velocity at the loop top for four different velocity

amplitudes (solid curve) for numerical simulations without thermal conduction. i.e. κo = 0.

The dashed curve is a fitted exponentially damped cosine oscillation with its envelope (dotted

curves). For comparison, the long-dashed line is the velocity profile for a small amplitude

(linear) oscillation that is damped solely by thermal conduction.
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Fig. 3.— Normalised velocity profile, V (t)/V0, of a fundamental mode at time t= 21 min =

0.97 Plin as a function of distance along the loop for four values of M0: 0.01 (solid), 0.2 (dot-

dashed), 0.5 (dotted-dashed) and 1.0 (long-dashed), in the presence of thermal conduction

κo = 10−11. The dashed line is the normalised velocity profile of a small amplitude (linear)

mode which is damped solely by thermal conduction.
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Fig. 4.— Temporal evolution of the velocity at the loop top for four different velocity

amplitudes (solid curve), in the presence of thermal conduction κo = 10−11. The dashed

curve is a fitted exponentially damped cosine oscillation with its envelope (dotted curves).

For comparison, the long-dashed line is the velocity profile for a small amplitude (linear)

oscillation that is damped solely by thermal conduction.
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Fig. 5.— Inverse oscillation quality factor P/τ as a function of Mach number M0 for two sets

of numerical simulations. The first set of curves starting at P/τ = 0 for zero Mach number

are from the numerical simulations without thermal conduction, i.e. κo = 0. The second

set of curves starting at Plin/τlin for zero Mach number correspond to numerical simulations

with thermal conduction, i.e. κo = 10−11. The curves with diamond symbols represent the

inverse quality factor determined from fitting a exponentially decaying cosine at the loop top.

The curves with star symbols correspond to the inverse quality factor determined from an

exponential fit to the oscillation envelope measured at the loop top. The horizontal dashed

line correspond to the value Plin/τlin.
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Fig. 6.— Inverse quality factor P/τ as a function of Mach number M0 = V0/Cs of the

SUMER events (circles). The dot-dashed line is a best linear fit to the data. The dotted

line is the fitted line where the slope has been reduced by a factor 2/π. The horizontal

dashed line is the inverse quality factor Plin/τlin of a small amplitude (linear) oscillation due

to thermal conduction. The solid line with diamond symbols is the inverse quality factor

determined from fitting to the numerical data at the loop top an exponentially decaying

cosine.


