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Abstract

The stability of the MHD tangential discontinuity is studied in compressible plasmas
in the presence of anisotropic viscosity and thermal conductivity. The general disper-
sion equation is derived and solutions to this dispersion equation and stability criteria
are obtained for the limiting cases of incompressible and cold plasmas. In these two
limiting cases the effect of thermal conductivity vanishes and the solutions are only in-
fluenced by viscosity. The stability criteria for viscous plasmas are compared with those
for ideal plasmas where stability is determined by the Kelvin-Helmholtz velocity Vi g as
a threshold for the difference in the equilibrium velocities. Viscosity turns out to have a
destabilizing influence when the viscosity coefficient takes different values at the two sides
of the discontinuity. Viscosity lowers the threshold velocity V. below the ideal Kelvin-
Helmholtz velocity Vi, so that there is a range of velocities between V, and Vi gy where

the overstability is of a dissipative nature.



1. Introduction

The problem of the stability of the MHD tangential discontinuity has attracted the
attention of scientists for a few decades. This problem arises in the study of the interaction
of the solar wind with the interstellar plasma, the interaction of the solar wind with
magnetospheres of the Earth and other planets, and different magnetic configurations in
the solar atmosphere where equilibrium flows are present.

Syrovatski (1957) and Chandrasekhar (1961) studied the stability of the MHD tangen-
tial discontinuity for ideal incompressible plasmas. They showed that there is a critical
value for the difference in the equilibrium velocity across the discontinuity. This criti-
cal value is called the Kelvin-Helmholtz (KH) threshold. The tangential discontinuity is
stable for a difference in the equilibrium velocity below the KH threshold and unstable
otherwise. The instability that arises is an overstable oscillation and is called the KH
instability.

Fejer (1964) generalized the study of the KH instability to compressible plasmas. He
derived the dispersion equation and studied the particular case of a plasma that is only
slightly compressible. Subsequently many other particular cases were investigated (see,
e.g., Gerwin, 1968, McKenzie, 1970, Duhau & Gratton, 1973, Myatnizkii, 1984, Gonzalez
& Gratton, 1994a,b, and Ruderman & Fahr, 1993, 1995). Duhau et al. (1970, 1971), Roy
Choudhury & Patel (1985), and Roy Choudhury (1986) studied the KH instability of a
tangential MHD discontinuity in plasmas with anisotropic pressure on the basis of the
Chew, Goldberger and Low equations for collisionless strongly magnetized plasmas.

So far all studies of the KH instability were carried out for ideal plasmas. However
an ideal plasma is an idealization. In real plasmas viscosity, finite resistivity and thermal
conductivity are present. In addition an exact discontinuity in the equilibrium velocity
cannot exist in a viscous plasma under general conditions. Therefore in general it does not

make sense to consider the stability of MHD tangential discontinuity in viscous plasmas.



However there are two exceptions to this general observation. The first exception occurs
when the coefficient of isotropic viscosity is much larger at one side of the surface of dis-
continuity than at the other side. This makes it possible to take the viscosity coefficient to
be equal to zero at one side of the surface of discontinuity. A difference in the equilibrium
velocity can exist across such a surface. Such an idealized situation was considered by
Ruderman & Goossens (1995) when they studied the viscous instability of a tangential
discontinuity in an incompressible plasma. The second exception is related to a more
realistic situation. In space plasmas the magnetic field is very often sufficiently strong to
make the ion gyrofrequency w,.; much larger than the inverse mean collisonal time of ions
771, If in addition the plasma can be considered as collisional (that is if all characteristic
scales are much larger than the mean free path of the ions), then viscosity is described
by Braginskii’s tensorial expression (see Braginskii, 1965). This tensorial expression for
viscosity containes five terms. The ratio of the sum of the four last terms to the first
term is of the order of 7w.. When 7w, > 1 the first term of the Braginskii’s tensorial
expression very often gives a good approximation for viscosity. As a result the tensor
of viscosity is highly anisotropic. A simple derivation of the highly anisotropic tensor of
viscosity based on a qualitative physical analysis was given by Hollweg (1985). He also
gives estimations of 7w, for typical conditions in the soalr corona. In accordance with
these estimations mw, ~ 3 x 10° in an active coronal region and 7w, ~ 7 x 10° near
the base of a coronal hole. A property of the highly anisotropic tensor of viscosity is that
it allows a jump in the velocity across a magnetic surface since a strong magnetic field
causes charged particles to rotate around the magnetic field lines thus preventing particle
diffusion across the magnetic field lines. This implies that there is not any momentum
flux across the magnetic surfaces and different layers of plasma can slide with respect to
each other along a magnetic surface without friction.

The thermal conductivity of plasmas is due mainly to the electrons. The expression

for heat flux involves three coefficients, denoted k), £1, and k. by Braginskii (1965).



The following estimates are valid: x /k) ~ (Tewee) ™2, VIR (Tewee) ™", where 7, is the
mean collisional time of electrons, and w,. is the electron gyrofrequency. If the Coulomb

logarithm is taken to be 20, we have
7, & 10T 2 s (1)

where T, is electron temperature and n. is electron concentration (CI units will be used
throughout). Following to Hollweg (1985) we take 7. = 2 x 10° K, n, = 3 x 10'®> m™3,
and B = 50 G in an active region of the solar corona. Then 7, ~ 1072 s, and T.w.. ~ 107.
Near the base of a coronal hole one might have 7. = 10° K, n, = 10 m~3, and B = 10 G.
Then 7. =~ 107" s and T.w.. ~ 2 x 107.

Thus the parts of the heat flux vector that involves k; and &, can often been neglected,
which means that only the heat flux in the direction of magnetic field is taken into account.
As a result we obtain strongly anisotropic thermal conductivity.

The relative importance of viscosity and thermal conductivity is characterized by the
Prandt] number Pr = nokp/m,#|, where 7o is the largest coefficient of viscosity in the
Braginskii’s expression for the viscosity tensor, m, is the proton mass, and kg is the
Boltzmann constant. Braginskii (1965) gives the following approximate expressions for 7
and &:

no ~ kgnTir;, k)~ 3kgm_'nT.7., (2)

where T; is the temperature of ions and m, is the mass of electron. Taking n. ~ n; and
T. =~ T; and using (??) we obtain

Pr MeT; Nl Me

~ ~
Im,T, 3\ m,

~ 1077, (3)

(??) shows that in plasma which consists of electrons and protons with approximately
equal temperatures Pr < 1. However this estimate leads to the conclusion that electron
thermal conductivity is more important dissipative process than ion viscosity only if 21,
where 3 is the ratio of plasma pressure to magnetic pressure. In what follows we shall see

that for problem of stability of MHD tangential discontinuity the relative importance of
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viscosity and thermal conductivity is characterized by the product 371! Pr rather then Pr
if 851, With the use of the same values of parameters of plasma and magnetic field that
we have taken in the previous discussion, we obtain that 8 & 0.016 in an active coronal
region and 3 & 0.007 near the base of a coronal hole. Hence typically in the solar corona
B7IPr ~ 1, so that viscosity and thermal conductivity are of the same inportance.

The relative importance of viscosity and resistivity is characterized by the magnetic
Prandt]l number P,, = 19/m,n;\, where X is the coefficient of magnetic diffusion. We take

the standard expression for A in fully ionized plasmas to obtain
P, ~3x107Vrmn.T,;. (4)

Substituting into (??) the values of parameters for an active region of the solar corona
and for the basis of a coronal hole, we get P, ~ 10'° in the both cases. This estimate
shows that dissipation due to resistivity can be neglected in comparison with dissipation
due to viscosity.

Finally, the relative importance of the Hall effect to viscosity is characterized by the
dimensionless parameter T.w. P;'. Using values of T.w. and P,, calculated previously,
we obtain T.w.. P! &~ 107% both in active region of the solar corona and near the basis
of a coronal hole. This estimate implies that we can neglect the Hall effect in comparison
with the effect of viscosity.

These observations based on dimensional analysis lead us to study the stability of an
MHD tangential discontinuity in a viscous thermal conductive plasma. We only retain the
first term in the Braginskii’s expression for the tensor of viscosity and only take parallel
termal conductivity into account.

The concept of negative energy waves turned out to be very fruitful for the study of
dissipative instabilities. For instance, Ruderman & Goossens (1995) have used this con-
cept to give an interpretation of the viscous instability of an MHD tangential discontinuity

in terms of negative energy waves. The concept of negative energy waves is based on the



energy equation

- (5)
where £ is the so-called linear part of wave energy and D is the dissipative function
(a detailed discussion of the concept of negative energy waves in hydrodynamics can be
found e.g. in Ostrovskii, Rybak & Tsimring, 1986). The functions € and D are not Galilei-
invariant in the sense that they depend on the choice of coordinate system moving parallel
to the discontinuity. If we choose a moving coordinate system such that D > 0, then (?7?)
shows that the linear part of the wave energy £ decreases owing to dissipation. In case of
a monochromatic perturbation & takes the form & = Fa?, where a is the wave amplitude.
When F > 0 the wave is called a positive energy wave. In accordance with (?7?) its
amplitude a decreases so that dissipation results in wave damping. When £ < 0 the wave
is called a negative energy wave. In accordance with (??) its amplitude a increases so
that dissipation leads to instability.

When dissipation is only present at one side of the tangential discontinuity, the choice
of the moving coordinate system in which D > 0 is very simple. The unperturbed plasma
must be at rest at the side of discontinuity where dissipation is present in this coordinate
system. When dissipation is present at both sides of the discontinuity the choice of the
moving coordinate system where D > 0 is much more complicated as it depends on the
ratio of the dissipative coefficients and on other plasma parameters. In fact the choice
of the coordinate system turns out to be more complicated than the study of dissipative
instability itself. In the present paper we study the stability of the MHD tangential
discontinuity with dissipation present at both sides of the discontinuity. Therefore we do
not use the concept of negative energy waves.

The paper is organized as follows. In §2 we present the set of dissipative MHD equa-
tions and boundary conditions that are used to study the stability of the MHD tangential
discontinuity. In §3 we derive the dispersion equation governing the stability of MHD tan-

gential discontinuity under the assumption that perturbations are only slightly damped



during one wave period. In §4 and §5 we present solutions to the dispersion equation for
incompressible plasmas and cold plasmas. In §6 we present physical consideration of ideal

and dissipative instabilities in an incompressible plasma. In §7 we summarize our results.
2. Dissipative MHD equations and boundary conditions.

We consider a collisional one-fluid model of viscous thermal conductive plasmas. As
explained in the Introduction we only retain the first term in Braginskii’s expression for
the tensor of viscosity and only take the parallel heat flux into account. The expressions

for the tensor of viscosity 7 and the heat flux q take the simple form:
1.
& = pov <b @b — 51) (3b.V(b.v') - V.v'} (6)
q = —/<;||b(b.VT/) . (7)

Here v = 19/ po is the kinematic coefficient of viscosity, B is the magnetic induction, p is
the density, v is the velocity, and T' is the temperature. b = By/By is the unit vector
along the equilibrium magnetic field, [ is the unit tensor, ® denotes the tensor product,
the subscript ‘0’ refers the equilibrium quantity, and an accent denotes an Fulerian per-
turbation of any quantity. The coefficients v and x| depend on the equlibrium density
and temperature. As the equlibrium density and temperature can be different at the two
sides of the discontinuity, so can v and &|;. For the present investigation the fact that v
can differ on the two sides of the discontinuity will be important. Equations (??) and
(??) are the linearized expressions for 7 and q as we only consider the linear stability of
tangential discontinuities.

i From a physical point of view the viscosity tensor (??) is characterized by the property
that at any magnetic surface the viscous stresses are normal to the surface. The expression
(??) means that the heat flux is directed along the magnetic field.

The unperturbed state is characterized by an MHD tangential discontinuity at z =

0, and all equilibrium quantities are constant at both sides of the discontinuity. The



equilibrium magnetic field By and velocity v are parallel to the plane of the discontinuity.
With the aid of (??) and (??) the linear equations of viscous thermal conductive MHD

can be written as

ap

N + poV.v' +voe.Vp' =0, (8)
ov' 1 1
= V' =—-—Vp' +—(VxB)xB
5 + (vo.V)v P P‘|'ﬂp0( x B’) x Bg
1
+v{b(b.V) — §V}{3b.V(b.v’) -V}, (9)
!
a{;?:Vx(voxB’—l—v’xBo), (10)
ap/ / ! 2t
En +vo.Vp' +ypoV.v = (v = 1)g)(b.V)™T", (11)
p/ pl T/
P_r - 12
Po po 1o ( )

Here p is the pressure, p the magnetic permiability, and 4 the adiabatic index.

The perturbed surface of the discontinuity is defined by the equation z = n(t,z,y).
The kinematic boundary conditions and the condition of continuity of stresses have to be
satisfied at this surface. In the linear approximation these boundary conditions can be
imposed at the unperturbed surface z = 0.

The linearized kinematic boundary conditions are:

_ 0

0
—77 —|— VOl.VT] 5 Wy = 8t

8t —|—V02.V7] 5 (13)

wp =

where w is the z component of the velocity, and the subscript ‘1’ and ‘2’ refer to quantities
at z < 0 and z > 0 respectively.

Stresses at the discontinuity can be found with the use of (??) and take the form
1
F = —n{P' + pov(b.V(b.v') — gv.v')} ) (14)

where n = (0, 0, 1) is the unit vector normal to the unperturbed surface of the disconti-
nuity, and P’ = p’ + By(b.B’)/p is the Eulerian perturbation of the total pressure. The

condition of continuity of stresses can then be written as

1
P" + por{b.V(b.v') — gv.v’} =0, (15)



where the square brackets denote the jump in a quantity across the discontinuity.
Condition (??) does not contain derivatives of the z and y components of the perturbed
velocity with respect to z. This implies that the x and y components of the perturbed
velocity can have jumps across the discontinuity in agreement with the discussion in the
Introduction.
The equations (??)—(??) and boundary conditions (??) and (??) are the basic equa-
tions for the study of the dissipative instability of the tangential discontinuity in the next

Sections.

3. Derivation of dispersion equation.

In order to derive the dispersion equation that governs the stability of the MHD
tangential discontinuity we Fourier-analyze the perturbed quantities and take them to be
proportional to exp{i(k.r — wt)}, where k = (k;, k,, 0), r = (z, y, 2), k is real, and w is

complex. This enables us to rewrite the equations (??)-(??) as

dw . .
Po— + ipok. V') —1Qp' =0, (16)
k By 1
v = —P — —(kb)B| —v{b(bk) - -k}Q, 17
=2 W)O( JB| — v{b(b.k) — 2k}Q (17)
, dP’ B v d
Quw = — L Bo gy 4@ (18)
po dz  ipo 3 dz
) dw
QBIH = Bob(k.v'”) - BOVIH(k.b) - ZBObE 5 (19)
OB = —Bow(k.b), (20)
dw k.b)?
Q' + c2po (id—t - (k-V'n)) = —'ix(7 — )1 (yp' —2p') . (21)

In these equations we have introduced the components of the perturbed velocity and the

perturbed magnetic field that are parallel to the unperturbed plane of discontinuity

v = (v,0,0), B =(B,,B,,0), (22)



and the Doppler-shifted frequency
ND=w— k.VO . (23)

The square of the sound speed ¢, is determined as ¢ = «ypy/po. The quantities @ and y

are given by

Q = 3i(k.b)(b.v')) —i(k.v)) — ‘fl—f (24)

In these equations m, is the proton mass and kg is the Boltzmann constant. (??) was
derived from (??) by use of (??) and the fact that the equilibrium pressure, density and
temperature pg, po, and Ty are related by the ideal gas law for fully ionized plasmas
Po = m—ppoTo . (26)
The Prandtl number Pr measures the relative importance of viscosity and thermal
conductivity, and the Reynolds number Re = V}, /vk measures the importance of viscosity
compared to inertia. Here V}, is a characteristic velocity. In what follows we assume that
Re > 1 and PrRe > 1. These inequalities imply that we restrict the analysis to linear
motions that are only slightly damped during a wave period. This enables us to use a
perturbation method and to treat the terms proportional to v and y in equations (?7?),
(??), and (??) as small in comparison to the terms that are already present in the ideal
theory. The terms proportional to v and y are evaluated with the use of relations obtained
in ideal MHD. All but two variables are eliminated from equations (??)—(??) and a set of

two first-order linear ordinary differential equations are obtained for w and P’

Q (. u0{0?—33(kb)2}\ dP'
wW=——11 9 (27)
poA 3(c2 +03)C dz
dw 0 iD L0 22(kb)? k2 — (k.b)?
@o_ 0 ) P2 3.2(kb)? s _
= e L x e aeen) (GEe
032 (k.b)?
—y ———L 3 P, 2
Ca e )
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The quantities A, ', and D take the form

A= —vi(kb)?, C=0*—c(kb)?, )
29
D=0 — (2 +v3)k*Q* + Zvik*(k.b)?,
and the squares of the Alfvén and cusp speeds are given by
B2 2,2
’Ui = —07 c%“ = QCSUAQ . (30)
1Po Cs T ;4
In addition we obtain the approximate expression for Q):
iQ{Q? — 3c%(k.b)?
= SalD ] ) (31)
po(cs + UA)O
Fourier-analysis reduces the boundary conditions (??) and (??) to
wp = —iﬂln, Wy = _ZQQTZ 5 (32)
[P’ + %Q] ~0. (33)

Elimination of P’ from (?7) and (??) leads to a single second-order ordinary differential

equation for w
d*w

F—FQU):O, (34)

where

D

M= T30+ vk, +ixKy) s T6= ~ e
s A

L QA{?—32(kb)P  03A(kb)?

K, ; = :
! 3(c2 +v4)CD x (2 +03)CD

To ensure that the perturbations vanish far away from the discontinuity we have to
impose that I'2 > 0. The assumptions Re > 1, PeRe > 1 lead to [vK,| < 1, [xK,| < 1,
and subsequently to R(T'?) > 0, where R denotes the real part of a quantity. The solutions
to (??) that vanish at = — —oo and z — 400 respectively and satisfy the boundary
conditions (??) are

wy, = _Z'aneFlz , W = —iﬂgne_F2Z ) (36)
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where we impose that $(I'; 2) > 0. The expressions for the Eulerian perturbation of total
pressure to the left (z — —0) and the right (z — +0) of the discontinuity immediately

follow from (??). They are

o
P2 (1= - 2R - 20,

T 2 3
01 | | | (37)
Po22 (23 tX2 4~ %)
P2 == —T] F—02 <1 — 7[&1,2 — 7]XX2> — §Q2 .

Application of the boundary condition for the stresses (??) then gives the desired disper-

sion equation

F(w, k)= Fr(w, k) + 1Fp(w, k) =0, (38)
where
A A
Frlw, k) = 2050 L P22 o k) = S, + S, (39)
Fov Loz
and n 4
pPorlrAr ., Po2V2Ag
v = 71 v 7[ v 9
%= ol 1t Tor,,
(40)
porx1Ar . poax2Asa .
S, = —————K —= "K.,.
YT T T

Here I'g; > 0, 'g2 > 0. As already stated the dispersion equation (??) has been derived
by using a perturbation method so that terms proportional to v2, vy, and x? are system-
atically neglected. The notations in (??) are obvious. The indices I and D to F; and
Fp denote the ideal and dissipative parts of the left-hand side of the dispersion equation.
When dissipation is absent so that Fp = 0, the dispersion equation (??) coincides with
the dispersion equation obtained by Fejer (1964).

The objective of the paper is to show that dissipation can cause overstability of the
MHD tangential discontinuity which is stable in the absence of dissipation. We are there-
fore interested in a situation where the discontinuity is stable in ideal MHD. The solution
to the ideal dispersion equation is a real frequency, w (Fr(w) = 0), which corresponds to
an oscillation. Dissipation produces a small imaginary correction, ¢, to the real frequency

w that leads to damping or growth of the oscillation. The approximate solution to (??)
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can be written as

L F
w=w+ry, = oF, (41)

This approximate solution and in particular the expression for the increment or decrement
v are obtained under the condition that |y| < |w|. The denominator a—wl in (?7?) is
calculated at w = @. 4 > 0 corresponds to an overstable oscillation, i.e. oscillation of
which the amplitude grows exponentially in time on a time scale v~ 1.

Now we can varify the ad hoc estimate given in Introduction, that the relative impor-
tance of viscosity and thermal conductivity is characterized by the dimensionless param-
eter B~'Pr when 3 < 1. Tt follows from (??) and (??) that contributions of viscosity and
thermal conductivity to 4 are proportional to S, and S, respectively. The relative im-
portance of viscosity and thermal conductivity is characterized by the ratio S,/S,. With

the use of (??) and (??) we obtain the estimate

S, v)?

Sx - Xcsz ‘

(42)

When 3 < 1, so that c? S v4, we have ? ~ v3k%. Substituting this estimate into (??) we
finally obtain S,/S, ~ 7' Pr, which means that the estimate taken ad hoc in Introduc-

tion is valid.

4. Incompressible plasma

In this section the general results of the previous section are applied to the study
of the stability of the MHD tangential discontinuity in an incompressible plasma. The
approximation of incompressibility is valid in plasmas where the sound velocity is much
larger than the Alfvén velocity (¢2 > v%). This approximation corresponds to taking

the limit ¢?/v% — oo, so that acoustic signals travel with infinite speed as it were. In
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particular we obtain for F7, S,, and S, by means of this procedure

kFr = po1Q1 + po2Q2 — porvy;(k.b1)? — po2viy(k.b2)?
S0 = oz lpam(kbi) 4 pun (kb)) (43)
Sy =0.
It is not surprising that S, vanishes for an incompressible plasma since it describes dis-
sipation related to thermal conductivity. This type of dissipation comes from the energy
equation which is decoupled from the other MHD equations in an incompressible plasma.
In what follows we use the difference in velocity across the discontinuity surface V =
Vo2 — Vo1 and the angles @1, @3, and ¥ between V and by, by, and k respectively. These
angles are determined by the conditions V?cos? p12 = (V.by2)?, k*V?cos?p = (k. V)3
lo12] < g, and || < % An angle is considered positive when measured counterclockwise
and negative otherwise (see figure 1). In figure 1 ¢1 > 0, @2 < 0, and b > 0.
We first consider the tangential discontinuity in ideal MHD since we want to start from

a situation that is stable in ideal MHD and to see how dissipation can make it unstable.

The ideal dispersion equation Fr(w) = 0 has two roots that can be written as

k.(po1vor + poavos)  k cos 77/)\/)001)002(‘/]3'}[ - V?) (44)
w4+ = )
* Po1 + po2

where the Kelvin-Helmholtz (KH) threshold velocity Vi is determined as

2 (po1 + poz){po1vi; cos® (1 — 1) + pozv’, cos®(pa — )}
Vin = 2 ’ (45)
Po1Poz cos?

If
V2> Vg, (46)

S(wy) > 0 (S denotes the imaginary part) and the discontinuity suffers the ideal KH
instability. When inequality (??) is satisfied the oscillations that propagate at the angles
+1 with respect to V have an amplitude that grows in time and are thus KH unstable,
so that (??) is a local criterion of KH instability.

In a real situation there are perturbations propagating in all directions. The tangential

discontinuity becomes unstable as soon as the local instability criterion (??) is satisfied for
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at least one value of the angle ). This implies that the discontinuity is unstable whenever
V2 is larger than the minimal value of the right-hand side of (??) with respect to 1. The
condition for instability can then be written as

V2s Vi, = (po1 + po2) v vhs sin® (g1 — w2) (47)
i Po1V%, sin” 1 + P02y sin? gy

(??) is a global critetion of KH instability and Vi is the global KH threshold velocity.

When @1 = g or 1 = ¢y £ g we get Vg = 0 and the tangential discontinuity is
unstable for any value of V. The case p1 = @3 = 0 (vectors by, by, and V are collinear)
is special. The right-hand side of (??) is now independent of ¢ and equal to ViH which

is determined by

2 2
Vi{H _ (Por + po2)(Po1vas + po2viay) _ (48)
Po1pPo2

The criteria for local and global KH instabilities are the same and coincide with those
given by Syrovatskii (1957) and Chandrasekhar (1961).

The objective of the paper is to show that dissipation contrary to intuition can cause
instabilities for differences in the equilibrium velocity that are smaller than the KH thresh-
old velocity Viy. For that reason we restrict the analysis to V? < V2, in an attempt
to study the local instability (for fixed direction of k) that is due to the presence of
dissipation. With the use of (??) and (??) we get

3]€2 4 4
o = g (o cos'(pr — )+ pavsos' ()

po1po2V{rs cos* (g1 — 1p) — 3 cos? (g — l/))})
\/POI/)O?(VBZ"H - V?) ’

where the subscripts £+ correspond to wy. It is easy to see that «4 and ~_ cannot be

+

(49)

positive simultaneously. The condition that either 44 > 0 or v_ > 0, so that one of the

two waves that propagate in the directions +k is unstable, can be written as
VESVE=0()Vig (50)

where

() = {po1r1 cos* (1 — ) + poavz cos*(p2 — )} ‘ (51)

(po1 + po2){porvi cos (1 — 1) + pozrs cos®(wy — 1)}
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The function @ is important since it determines whether the threshold velocity for dissi-
pative instability is smaller or larger than the ideal KH threshold velocity. It is easy to
show that ® < 1, i.e. V? < V2, which implies that there is a range of velocities |V., V|
in which the instability is caused by the action of viscosity. The function ®(v)) takes its
minimal value {min(po1, po2)/(po1 + poz2)} for cos(pr — 1) =0 (k.by = 0) if po1 > poz2, and
for cos(pa — 1) =0 (k.by = 0) if po1 < po2. The function ®(¢)) takes its maximal value 1
for cos?(p1 — 1)/ cos*(p2 — ¥) = \/m

In general we cannot find an analytical expression for the minimal value of the right-
hand side of (??), and thus cannot obtain the global criterion for dissipative instability
in a closed form. We consider two special cases. Let us first assume that dissipation is
only present at one side of the discontinuity. Without loss of generality we can assume
that viscosity is only present below the plane of discontinuity (z < 0), so that v, = 0. ®

is independent of b and takes the form

o=t (52)

po1 + poz

The global criterion of the dissipative instability is
Visyi= P R 53
° 7 por +poz F (53)

When the vectors by and V are collinear (¢1 = @3 = 0) this result coincides with that
obtained by Ruderman & Goossens (1995) who considered the dissipative instability of
the MHD tangential discontinuity in an incompressible plasma with isotropic viscosity
at one side of the discontinuity. This result supports the statement by Ruderman &
Goossens (1995) that the threshold for the dissipative instability is independent of the
type of viscosity that is present at one side of the discontinuity.

Let us now look at the case where the vectors by 2 and V are collinear (1 = @3 = 0).

Again ® is independent of ¢ and the global criterion for the dissipative instability is

(porv1 + P02l/2)2 V?
2) KH >

Vs V% = >
(po1 + poz)(porvi + poavy

[

(54)
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where Vim is determined by (??7). The threshold velocity for global dissipative instability
V. satisfies the inequality V., < Vg and depends on the ratio v1/ve. When vy = vy we
obtain V, = V. For all other combinations of 1, and v, V, < Vg, so that there is a
range of differences in the equilibrium velocity V where the MHD tangential discontinuity

is unstable when viscosity is present and stable in ideal MHD.

5. Cold plasma

In this section we consider the stability of the MHD tangential discontinuity in a cold
plasma. For the sake of simplicity we assume that ¢ = @5 = 0 (so that the vectors by »
and V are collinear), po1 = po2 = po, and va; = vaz = v4 (so that there is only a jump in

vo). The expressions for Fy, S,, and S, are obtained by taking the limit ¢?/v3 — 0 and

reduce to
2 12,2 2 2 12,2 2 N
Fr = pova Oy — kv cos 77/)+QQ k*v3 cos®
g —_Po (Vlﬂl(ﬂf — k*vicos? ) 1a0y(93 — ko) cos? ¢)2) (55)
T v (k2% — 03) (k2% — 03) ’
Agx = O

Here also the result S, = 0 is what we expect since the temperature is equal to zero in a
cold plasma and the finite thermal conductivity does not operate.
As in Section 4 the tangential discontinuity is first considered in ideal MHD. The

equation Fr(w) =0 can be transformed to the algebraic equation
(QF — ON{NQ; — k20305 — 20505 + k*vf cos® (1 4 sin® )} = 0. (56)

(??) has been obtained from Fj(w) = 0 with the use of squaring. Therefore (??) can
have spurious roots that do not satisfy Fr(w) = 0. The root of the first factor in (??) is

spurious. The roots of the second factor are

1
X3 =k (vz1 + ZVQ cos’ ) £ vA\/vfl sin ¢ + V2 cos? 1/)) \ (57)
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where
X=w- %k.(vm + Vo2) (58)

When
4oy < V? < 4k (1 + 2tan? o) (59)

we have X? < 0. The root of (??) is then

1 ./
w = §k.(V01 + VOQ) + —XE (60)

and has a positive imaginary part. This root (??) is not spurious and satisfies the equation
Fr(w) = 0. The existence of the root (??) implies that (??) is the local criterion (for fixed
k or 9) for KH instability. The global criterion for KH instability is given by the left
inequality (??). The right inequality (??) shows that for V' > Vg = 204 the waves that

propagate at angles v restricted by the inequality

V2 _ 42
|th| > arctan 721)‘4 (61)
8vj

This result is in apparent contrediction with results obtained by Duhau & Gratton

are unstable.

(1973). These authors studied the KH instability of the same magnetic plasma configu-
ration but they took the finite plasma pressure into account. They in particular obtained
that in case where ¢2 < v the MHD tangential discontinuity is unstable in two velocity
ranges: V > 2v4, and Jivy < V < Jyvy, where J, < 2. J; — 1 and J, — V2 when
¢s — 0, which means that the MHD tangential discontinuity in a cold plasma is unsta-
ble not only for V > 2vy4, but also for vy < V < vs4v/2. This apparent contradiction
is easily removed. The point is that the increment of the instability that is present for
Jivg <V < Jyvy is of the order of ¢,k, so that this increment vanishes when ¢, — 0. As
a result the tangential discontinuity is stable for v4 < V < v4v/2 in complete agreement
with the result of the present section.

However in reality a situation with ¢; = 0 does not exist, so that from a physical point

of view the approximation of a cold plasma implies that ¢? < v% rather than ¢, = 0.
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In what follows we shall study the dissipative instability of the tangential discontinuity
that takes place for V' < 2Vy. There is no ideal instability of the tangential discontinuity
in the velocity range v4v2 < V < 2v4 and the dissipative instability is important no
matter how small its increment is. In the velocity range vy <V < vaV/2 there is an ideal
instability with a small increment of the order of ¢,k, so that the dissipative instability is
important only if its increment is much larger than c,k.

In order to study the instability caused by dissipation we limit the analysis to the
situation when the discontinuity is stable in ideal MHD. Hence we take V < 2v4 so that
the equation F'(w) = 0 has four real roots that are determined by (??) and (??). However

only the two roots

_ 1
(.():(t ) = §k.(V01 + Vog) + X_ (62)

satisfy the equation F'(w) = 0. The two remaining roots

1
w(f) = §k.(V01 + Vog) + X+

(-)

are spurious. In what follows we only consider the roots wy ’, so that we omit the

superscript (—). The expressions for the instability increment take the form

k?* cos® (k. V) (403 — V)4
+ = s
24X2 (2v% sin? ¢ + V2 cos? h + QUA\/vi sin* ¢ + V2 cos2 )

(63)

where

Uy = 04 (Q) — v3k? cos® ) — 1,05(3 — vik? cos® 1) . (64)

The right-hand side of (??) is calculated at w = wy, where wy are determined by (?7).

As V? < 4v%, the condition 4 > 0 is equivalent to
(k.V)¥s >0, (65)
This condition can be rewritten as
+2X_(k.V) (11 — 1) {XE 2 cos? ¢ (vj n iv?)}
> k*V?cos? (g + 1) {XE + k* cos* ¢ (vi - EVZ)} . (66)
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The right-hand side of (??) is positive, so that the condition (??) cannot be satisfied for

both signs in the left-hand side. With the aid of (??) the condition that (??) is satisfied

for one choice of the sign in the left-hand side can be written as
M1 =M+ &) <8¢ (M* +1-¢%), (67)

where

£2C08277/J:1—|-M2C082?7/J—\/Sil’l477/)—|-4M2C08277/). (68)

Here M is the Alfvén-Mach number and 6 is a dimensionless quantity that measures the

relative difference in viscosity at the two sides of the discontinuity. They are given by

V vVl — Uy
M=_—"— §= .
204 v + 1y (69)
The solution to (??) is
M? > MZ(8,%)
1 28%tan? (6% — cos 2¢p) + [1 — 6%(1 + 2 tan? L/))]\/(l — 82)2 + 482sin* o)
= -+ - (70)
> 5(1 — 62)2
In the particular case that 6 — 1 (1 — 0 or vy — 0), (??) reduce to
.2
ME(1, ) = LEI Y - v (71)

When 6 = 0 (v1 = v2) M.(0,v) = 1. This means that there is no instability due to the
action of viscosity for a difference in equilibrium velocity below the KH threshold when
the viscosity coefficients are equal at the two sides of the discontinuity. It can be shown

that for 0 < 6 < 1 the following inequalities hold

LS sy <1 (72)

Note the two other useful identities:

1
14 62

M2(5,90°) = , M(8,0)=1. (73)
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It follows from (??) that the second identity (??) is only valid for § < 1. As a consequence
the function M.(6,) is discontinuous at 6 = 1, v» = 0. The dependence of M.(6,1) on
for different values of ¢ is shown in figure 2. The right inequality of (??) shows that there
is an interval of differences in the equilibrium velocity for which a wave propagating at
the angle ¢ with respect to the equilibrium magnetic fild is unstable in a viscous plasma
and stable in an ideal plasma.

(??) is a local criterion for dissipative instability. Figure 2 shows that M.(6,¢) is a
non-monotonic function of ¢ for fixed é and that it attains its minimal value at ¢ = 1,,.

The global criterion for the dissipative instability is
M > M () = M.(6,) . (74)

where M, is the global critical Alfvén-Mach number. The angle 1, is determined by the
equation

cos® ¥, (1 + sin? 1, cos® 1, ) = 6%, (75)
and M.(§) can be expressed in terms of 1, as

_ )
M.= o8 P (1 4 cos? iy, (76)

Figures 3 and 4 show how ,, and M, depend on §. Both quantities are monotonically
decreasing functions of §.

The present analysis shows that M. < 1 for § < 1 (v1 # v2). This means that there
is an interval of differencies in the equilibrium velocities below the KH threshold velocity,

for which the discontinuity is unstable owing to the presence of viscosity.

6. Physical discussion for an incompressible plasma

In this section we present a physical interpretation of the ideal and dissipative insta-
bilities in an incompressible plasma. For the sake of mathematical simplicity we consider

an unperturbed state with the equilibrium magneti field Bg and flow velocity v that are
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in the x direction. In addition we restrict the analysis to two-dimensional perturbations.
Hence the perturbed magnetic field and velocity are in the zz plane, and all the perturbed
quantities are independent of y.

In what follows we use a laboratory coordinate system in which the flow velocitites
at the both sides of a tangential MHD discontinuity, vg; and vgy, are fixed. When the
difference between the flow velocities at the two sides of the discontinuity, V', is below the
Kelvin-Helmholtz threshold velocity, V' < Vi g, two surface waves can propagate along the
surface of the discontinuity. We introduce a new coordinate system that moves with the
phase velocity of a surface wave in the x direction with respect to the laboratory coordinate
system. We refer to this coordinate system as a concomitant coordinate system. In the
concomitant coordinate system plasma motion perturbed by the presence of a surface
wave is steady.

Before we embark on our physical discussion of dissipative instability, it is expedient
to give a physical interpretation of the ideal KH instability and take 1y = vy = 0. Let
us turn to figure 5 where the plasma motion perturbed by the presence of a surface wave
is shown. The solid line is the perturbed surface of the discontinuity. We focus on the
balance of forces acting on a fluid volume that embraces the surface of the discontinuity
(see figure 5). The centrum of curvature of the solid line that correspond to the centrum
of the fluid volume is in a point C. The radius of curvature is R. The length of the
fluid volume is 2R 66, and the height is 2 6z. The surface of the dicontinuity devides the
fluid volume in an upper and an lower part. The two parts of the fluid volume move
approximately along the arc of the circle with raduis R and centrum at C. The upper
part of the volume moves with the velocity vgz — Vpn, while the lower part moves with the
velocity vo; — Vin, where V33, is the phase velocity of the surface wave. The centripetal
acceleration of the upper part is (vo2 — Vpn)?/ R, that of the lower part is (vo1 — Vpn)?/R.

It is well-known that a dynamical problem can be reduced to a static problem by the

use of the inertial forces, which are equal to the product of the corresponding masses
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and accelerations and have the directions opposite to the directions of the accelerations.
The dynamical equations are then reduced to the equations that reflet the balance of
the inertial and the active forces. The masses of the upper and lower parts of the fluid
volume equal 2pga R 660 6z and 2pg; R 66 6z respectively. Therefore the projection of the
inertial force, which in our case is the centrifugal force, on the normal to the surface of

the discontinuity is given by
Feen = 260 62{po1(vo1 — Vph)2 + poz(voz — ‘/ph)Q} ; (77)

and is directed upwards.

Let us now calculate the projection of the active forces on the normal direction. When
doing so we only calculate forces that are of the first order with respect to the three small
quantities: 6z, R0, and R™'. The quantity R~! is small because we consider only small
perturbations of the surface of discontinuity. The active force consists of two parts. The
first part is due to the total pressure and the second part is due to magnetic tension.
The contribution related to the total pressure can be splitted in two parts. The first part
is due to the total equilibrium pressure Py, while the second part is due to the Eulerian
perturbation of the total pressure P’. It is straightforward to show with the use of Gauss
theorem that the resulting force of the total equilibrium pressure Fy on any closed surface
equals zero. The projection of the force due to P’ on the normal direction is due to
the action of P’ on the upper and lower boundaries of the fluid volume. However the
quantity P’ is continuous at the surface of the discontinuity and depends on z as e ¥l
Consequantly the values of P’ at the upper and lower boundaries are the same and P’
does not contribute in the projection of the active force on the normal direction. In
summarizing the projection of the resulting force on the normal direction due to the total
pressure is zero.

The active force that is due to the tension of the magnetic field acts on the end-walls

of the fluid volume (see figure 5). The force of magnetic tension that acts on each end-wall
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is given by

2 2
Po— & (ﬁ + @) 7 (78)
g

and this force is perpendicular to this end-wall. We have used the equilibrium magnetic
field instead of the perturbed magnetic field when calculating F; since we want to be
consistent with linear theory. There is a small inclination of the end-walls with respect
to the normal direction to the surface of the discontinuity at the centrum of the fluid
volume. As a result there is a non-zero projection of the magnetic tension force on the
normal direction equal F} 66.

Now taking into account that the projection of the force of the magnetic tension on the
normal is directed downwards, we write the balance of forces acting on the fluid volume

in the normal direction as

Frow = 2F, 60 . (79)

With the use of (??) and (??) we obtain from (??) the equation that determines the phase

velocity of a surface wave
,001(1)01 - Vph)2 + POQ(UOQ - Vph)2 = POIUZU + PO2U312 . (80)

It follows from (??) that the phase velocities of the two surface waves are given by

_ porvor + poavor £ \/porpor(VEy — V?)

Von
P Po1 + Po2

(81)

The same result can be obtained from (??) if to take k parallel to both v¢; and vg, and
1 = 0. We see that the phase velocities of the surface waves that can propagate on
the surface of the discontinuity are determined by the force balance in the concomitant
coordinate system. The centrifugal force related to the centripetal acceleration of a fluid
volume moving along a curved surface of the discontinuity has to be balanced by the
tension force due to the magnetic field.

The difference between the phase velocities of the two surface waves decreases when V'

is increased. This difference becomes equal zero for V. = V. If V is further increased,
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solutions in the form of a surface wave do not anylonger exist and the KH instability of
the tangential discontinuity appears. From a physical point of view the development of
KH instability can be explained as follows. Let us consider for V,;, as simply the speed of a
moving coordinate system. The value of the centrifugal force Fie, is a squared function of
Von- It takes its minimal value Ffe“llqn at Von = (po1vo1 + po2v02)/(po1+poz2). When V < Vi

we have F™i» < 2F, §6 and (??) possesses exactly two solutions. When V' > Vi g we have

cen

Fmin 5 9F, 66, so that in all moving coordinate systems the centrifugal force cannot be
balanced by the force of magnetic tension in any and there is not any coordinate sytem
where the steady state can be reached.

Let us now consider the dissipative instability and take 11 + vy # 0. As we are only
interested in dissipative instability, we restrict our analysis to V < Vg, so that there is
no KH instability in ideal MHD. We use the concomitant coordinate system in which the
plasma motion that is perturbed by a surface wave is steady when viscosity is absent. The
presence of viscosity destroys an exact balance of the centrifugal force and the magnetic
tension force, and thus causes the surface wave to damp or to grow. The growth of the
surface wave means that dissipative instability is present. Our objective here is to obtain
the criterion of the dissipative instability from a discussion of the forces that act on the
fluid volume embracing the perturbed surface of the discontinuity.

The study of the ideal KH instability was carried out in general terms. In particular,
we did not specify the shape of the perturbed surface of the discontinuity. In order
to study the dissipative instability we have to be more specific and define the shape

of the perturbed surface of the discontinuity in the concomitant coordinate system as

n = 1, cos(kz). The Eulerian perturbation of total pressure modified by viscosity is

1
P'= P'4 por{b.V(bv) = 2V.v'}. (82)

It is the modification of the perturbed total pressure due to viscosity that causes the
change in the shape of the perturbed surface of the discontinuity. As a result the amplitude

of oscillation of the perturbed surface of the discontinuity depends on time: 5, = 1,(1).
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It is instructive to divide the total acceleration of the fluid volume @ in the normal
direction in two parts: @ = dcen + ayis. The centripetal acceleration ace, is caused by
the magnetic tension force and is not related to the dependence of n, on t. The viscous
acceleration ay; 1s related to the dependence of 5, on ¢. This acceleration is caused by the
action of P’ on the lower and upper boundaries of the fluid volume. As we are interested
in the dependence of 5, on ¢, we only calculate ;.

In accordence with (?7?) ]51’ = PQ’ = ]56 at z = 0. In the concomitant coordinate system
Q= k(Von — vo) . (83)

When ¢, — oo (an approximation of an incompressible plasma) we have the following

limiting expressions for I'y, K,, and K,

Sk(’Uo — Vh)
To=k, K, = : K, =0. 4
’ - (Uo—Vph)Q_U,%x’ =0 (84)
We use (?77) and (??) to get from (?7)
. 3 )
Py = pork{[(om — Vi) = v cos(le) + Sk(om = Vo) sin(ke)} . (85)

The dependence of ]51’ and ]52' on z is given by the functions e"* and e~"2? respectively.
Taking into account that 6z, 11, and vy are small, it is straighforward to obtain the
following approximate expressions that determine ]51’ at the lower boundary and ]52' at the

upper boundary of the fluid volume

N

P{ = porkna{(1 = 62)[(vor — Ven)? = v3y] cos(ka) + Svik(vor — Von) sin(kz)} ,
Py = P01k‘7]a{(1 =k 82)[(vor — Von)* — vl cos(ka) + Grik(vor — Von) sin(kz) L gy

(vor = Von)? — 03
(voz — Von)? — vy

—I—%k2 bz [l/g(’l)og — Von) — 11(vo1 — Vph)] sin(kx)} )

/

The force that causes the acceleration avis consists of three contributions. The first
contribution is related to the difference in Pl’ and ]32’ at the lower and the upper boundary
of the fluid volume. The second contribution is due to a small difference in the lengths of

the upper and the lower boundaries. The third contribution is due to a small inclination
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of the two end-walls of the fluid volume with respect to the normal direction. It is easy
to see that the two latter contributions are of the order of n2. In linear theory these two
contributions can be neglected. With the use of (??) it is straightforward to obtain from

(??) the following expression for ay;s

33 .
Uyis = K{Poﬂ/l(vm - Vph) + P021/2(U02 - Vph)} Slﬂ(kl’) . (87)
01

This acceleration is directed upwards.
On the other hand the upward accelerations of the upper and lower parts of the fluid

volume are given by

8’[1}2 @wg awl awl
a9 =

o Ty = trags (88)

With the use of (??) we then obtain for the upward acceleration of the centre of mass of

the fluid volume

_ 0% n 2/)01(1)01 — Von) + po2(voz — Von) 0% n po1(vor — Vph)2 + poa(vo2 — Vph)2 d*n
ot? Po1 + po2 0toz Po1 + po2 dx?

(89)

a

The last term in (??) represents deen. As we only consider small viscosity, the characteristic
time of changing 7, is much larger than the wave period in the laboratory coordinate
system, so that |dn,/dt| < kVpnn,. This enables us to neglect the first term in (??) in
comparison with the second term. As a result we arrive at the following approximate

expression for ayis

- - d a .
— _Qkpm(vm Vl;l:j i Zzz(vm Von) 77t sin(kx) . (90)

Ayis

We compare expressions (??) and (?7?) for ayis to obtain an equation for n,()

dn, _ 3k2(/)01 + po2)
dit 8,001

Fna , (91)

where
_P01V1(”001 — Von) + po2va(voz — Von)

F =
po1(vor — Von) + po2(vo2 — Von)

(92)
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The amplitude of the surface wave decreases if F < 0 and increases if F > 0. Hence the
criterion for the dissipative instability is given by the inequality F > 0.

It is straightforward to show that F > 0 for one choise of sign in (??) when the criterion
of dissipative instability (??) found in Section 4 is satisfied. If (??) is not satisfied, F < 0
for the both choises of sign in (??). Hence we obtain the criterion of dissipative instabil-
ity from a physical discussion of the plasma motion. The present discussion shows that
the cause of the dissipative instability is the breakdown of the balance of forces acting on

the fluid volume embracing the surface of the discontinuity caused by anisotropic viscosity.

7. Conclusions

In the present paper the dissipative instability of the MHD tangential discontinuity
has been studied. The dissipative mechanisms considered here are viscosity and thermal
conductivity. Both viscosity and thermal conductivity have been assumed to be strongly
anisotropic, so that the viscous stresses are normal to the magnetic surfaces, and the
heat flux is 1-dimensional along the magnetic field lines. The general dispersion equation
determining the stability of the MHD tangential discontinuity has been derived. This
equation has been studied for the two limiting cases of an incompressible plasma and of
a cold plasma. In these two limiting cases viscosity is the only dissipative process that
affects the stability. In an incompressible plasma thermal conductivity does not affect
stability because the energy equation is decoupled from the other MHD equations. In a
cold plasma thermal conductivity does not affect stability because the temperature and,
consequently, the internal energy of the plasma is equal to zero.

In the case of an ideal plasma the stability of the MHD tangential discontinuity is
determined by the Kelvin-Helmholtz (KH) threshold velocity Vikgr. When the difference
in the equilibrium velocity V' is smaller than Vi g the discontinuity is stable, while it 1s

unstable when V' is larger then Vi . The instability which is present in that case is called
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the Kelvin-Helmholtz (KH) instability.

The present paper was concentrated on a situation when the MHD tangential disconti-
nuity is stable in ideal MHD and intended to find out whether dissipation, contrary to the
intuitive expectation, can lead to instability. The main result is that viscosity introduces
a new threshold velocity V. for overstability which is lower than the ideal KH threshold
velocity Vi at least when the viscosity coefficient v takes different values at the two sides
of the discontinuity. There is a range of differencies in the equilibrium velocity between
V. and Vig when the overstability is due to dissipation, so that we would like to call it
the dissipative instability. In general we can state that dissipation destabilizes the MHD

tangential discontinuity.
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Figure captions

FIGURE 1. The scetch of introduction of the angles ¢1, @3, and 1. The counterclockwise

direction is considered as positive. On this figure @1 > 0, @3 < 0, and ¥ > 0.

FIGURE 2. The dependence of the local critical Alfvén-Mach number M, on the angle
Y between the direction of the equilibrium magnetic field and the direction of the prop-
agation of the perturbation for different values of the relative difference in the viscosity
coefficient 6 in the case of a cold plasma. The values of 6 are shown under corresponding

curves.

FIGURE 3. The dependence of the angle v, at which the local critical Alfvén-Mach num-

ber M. attains the minimum value on the relative difference in the viscosity coefficient 6.

FIGURE 4. The dependence of the global critical Alfvén-Mach numbem M. on the rela-

tive difference in the viscosity coefficient 6.
FIGURE 5. The scetch of the flow in the vicinity of the perturbed surface of the tangential

discontinuity (shown by solid line). The fluid volume (shaded) embracing the surface of

the discontinuity is shown together with quantities used in the physical consideration.
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