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The nonlinear evolution of magnetoacoustic waves in a nonadiabatic plasma are investigated analytically.

The effect of plasma activity due to linear and quadratic heating and radiative cooling on propagating magne-

toacoustic waves in a uniform plasma are considered. A nonlinear evolution equation is derived and stationary

solutions are looked for the various combination of signs of the linear and quadratic heating-cooling terms,

which determine the thermal activity of the plasma. It is shown that self-organizing magnetoacoustic waves

(autowaves) exist in an active plasma. These wave have amplitudes that are independent from the initial condi-

tions and function of plasma properties only. Their potential diagnostic purposes are discussed. Furthermore,

magnetoacoustic auto-solitary waves are shown to exist. They have been modeled using a novel perturbative

technique which allows to determine their propagation speed and shape.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

The study of the propagation and stability of magnetohydrodynamic (MHD) waves in nonadiabatic plasmas is important for

the understanding of the formation and evolution of structuring at various spatial and temporal scales. Nonadiabaticity in the

form of optically thin radiation and plasma heating provides free energy for a wave to be amplified. We call this process plasma

activity. Radiative losses from optically thin plasmas depend in a complex manner on the thermodynamic properties of the

plasma [1, 2]. Equally, expressions for plasma heating are highly dependent on application and the physical situation. However,

valuable insight can be gained by studying generic heating-cooling functions in the energy balance. It is known that a negative

gradient of this function w.r.t. thermodynamic quantities leads to a thermal instability [3]. This instability has been extensively

studied in various contexts for the formation of cool condensations such as solar prominence formation [4], interstellar clouds
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[5] and edge phenomena in tokamaks [6]. Most studies focused on the linear stage of the instability [7, 8]. One-dimensional

nonlinear studies have also been performed numerically [9–12] and the possiblity for the apperence of steady solutions i.e.

auto-solitons, was shown by [13]

Here, we shall study the nonlinear dynamics of magnetoacoustic waves in a thermally active, linearly dispersionless diss-

apative plasma analytically. The generic nonlinear evolutionary equation describing dynamic processes in an active medium

including self-organization is a quasilinear and nonlinear parabolic equation

∂u

∂t
= F (∇u,u) + ∇.(D.∇u) + A(r, t,u) , (1)

where u is the physical quantity describing the system. Such an equation often occurs in for example hydrodynamics, nonlinear

optics or chemical reactions [14]. The three terms on the right-hand-side describe nonlinearity, diffusion and activity, respec-

tively. The quantity A i.e. amplification, may be of a form that allows wave excitation. The simplest form of A that can achieve

this is A = u. Here, the dependency of the heating and radiative cooling functions on thermodynamics quantities determine the

form of A.

The influence of activity on shock formation of MHD waves has been studied by [15] using a linear activity function related to

the gradient of the heating-cooling function. They showed that a shock may form faster or be completely suppressed depending

on the sign of the activity. Furthermore, [16] investigated how linear activity leads to the existence of a slow magnetoacoustic

autowave solution. An autowave is an example of a self-excited nonlinear wave. With the amplitude that is fully prescribed by

the plasma and is independent from the initial conditions.

The heating-cooling function is in most cases not monotonic and often a turnover of the radiative loss function from a positive

slope to a negative slope with increasing temperature is observed. Therefore, to model the effect of local extrema in the heating-

cooling, we have chosen to consider a generic form of activity that includes a quadratic nonlinear term, i.e. A = au + bu2. As

we shall see, this extension introduces new physics such as the existence of solitary waves.

The paper is structured as follows. In Sect. I the physical model used is introduced and the nonlinear evolutionary equation

governing propagating magnetoacoustic waves in an active plasma is derived. In Sect. II B The classes and stability of stationary

solutions are examined, making use of perturbation theory near fixed points in phase space. In Sect. III the autowave solution is

examined in detail. In Sect. IV the auto-solitary wave is studied using a novel perturbation technique.
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figure. 1: Model geometry with the equilbrium magnetic field, B0, and direction of wave propagation

II. MODEL AND GOVERNING EQUATIONS

A. Equilibrium and governing MHD equations

The nonlinear MHD waves are studied in a uniform plasma for which a Cartesian coordinate system x, y, z is adopted. The

equilibrium magnetic field, B0, lies in the x z-plane. It has a constant magnitude B0 and angle θ with respect to the z-axis. The

wave propagation is fixed to be in the z-direction. Hence, a value of θ = 0, π (θ = ±π/2) represents parallel (perpendicular) wave

propagation with respect to the magnetic field direction. The model geometry is illustrated in Figure 1. Equilibrium flows are

not considered. The typical speeds in the model are the Alfvén speed, CA = B0/
√
µ0ρ0, and the sound speed, CS =

√
γp0/ρ0,

where p0, ρ0, γ and µ0 are the equilibrium pressure and density, the ratio of specific heats which, will be taken as 5/3, and the

permittivity of free space, respectively. In what follows we shall use the notations CAx = CA sin θ and CAz = CA cos θ.

The following version of the MHD equations are used:

∂ρ

∂t
+ ∇ · (ρV ) = 0, (2)

ρ
dV

dt
= −∇p +

1
µ0

(∇ ×B) ×B, (3)

∂B

∂t
= ∇ × (V ×B) , (4)

∇ ·B = 0. (5)

dp
dt
− γp

ρ

dρ
dt
= (γ − 1)

[L(ρ, p) + ∇ · (κ∇T )
]
, (6)

where V , B, p, ρ and T are the plasma velocity, magnetic field, pressure, density and temperature, respectively. The later

three quantities are related through the ideal gas law. We consider MHD waves with small amplitudes such that they can be
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described using an expansion procedure of the MHD equations in wave amplitude. The plasma quantities are expanded around

the equilibrium as f (z, t) = f0+ f ′(z, t), where f ′ now denotes a perturbed quantity. It is assumed that perturbations vary spatially

only in the z-direction and hence are plane.

The MHD equations used here include in the energy balance the effects of non-specified heating, thermal conduction and

radiative losses. These processes are considered weak such that perturbations of these terms are at least of the order of the

square of the wave amplitude. Viscous and resistive processes have been ignored. The first term on the right-hand side of Eq.

(6), L(ρ, p)=H(ρ, p) − Lr(ρ, p) combines the effects of heating and radiative cooling of the plasma. The heating H(ρ, p) is an

arbitrary function of density and pressure and may be prescribed depending on the specific physical scenario of interest. The

radiative cooling function Lr(ρ, p) is due to optically thin radiation and depends on the details of radiation profiles of line and

free emission from minority species in the plasma [1, 2]. Therefore, both heating and radiative losses may be a complicated

function of density and pressure. A radiative loss function that decreases with increasing temperature is known to be a main

driver of thermal instabilities [3]. This possible scenario corresponds here to a positive slope of L. We expand L(ρ, p) in a

Taylor expansion up to second order around the equilibrium values ρ0 and p0:

L(ρ, p) ≈ L(ρ0, p0) +
∂L
∂ρ

ρ′ +
∂L
∂p

p′

+
1
2
∂2L
∂ρ2 ρ

′2 +
∂2L
∂ρ∂p

ρ′ p′ +
1
2
∂2L
∂p2 p′2 , (7)

where all derivatives are evaluated at the equilibrium density and pressure. The inclusion of the second order derivatives allows

to describe the role of heating and radiative cooling processes close to and at extrema in the heating-cooling function. To take

into account these possibilities, we consider in the further analysis that the terms in Eq. (7) involving the first and second order

derivatives are of the same order, i.e. quadratic in the wave amplitude.

The second term of Eq. (6) represents thermal diffusion where the thermal conduction coefficient κ is of the form

κ = κ∥ cos2 θ + κ⊥ sin2 θ , (8)

where κ∥ and κ⊥ are the thermal conduction coefficients parallel and perpendicular to the magnetic field in the x-z plane. In

classical Braginskii transport theory [17], heat conduction is much more efficient parallel to the magnetic field than across, i.e.

κ⊥ ≪ κ∥. κ∥ = 10−11T 5/2 W m1 K1 where the value of proportionality is a function of fundamental constants, the ion charge

state (taken to be unity) and the Coulomb logarithm (a weak function of density and temperature, assumed constant). However,

in tokamak experiments, thermal conduction is anomalous and the perpendicular conduction is significantly enhanced above

classical values [18].

Taking into account the equilibrium model and choice of perturbation, nonlinear equations describing the Alfvén wave and
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magnetoacoustic waves can be described. In the particular model, the Alfvén wave causing perturbations Vy and By are decoupled

from the magnetoacoustic wave and cannot be excited nonlinearly if the Alfvén wave amplitude is zero initially. Therefore, we

take y-components of the perturbation to be zero. The derivation of the wave equations from the perturbed MHD equations is

detailed in Appendix A. There, it is shown that the nonlinear wave equation for magnetoacoustic waves in terms of Vz is given

as (where the prime as been dropped for ease of notation):

[
∂4

∂t4 − (C2
A +C2

S)
∂4

∂t2∂z2 + C2
Az C2

S
∂4

∂z4

]
Vz

= 2C2
S

[
L1+K

∂2

∂z2

] [
∂2

∂t2 −C2
Az
∂2

∂z2

] ∫
∂2Vz

∂z2 dt′

− 2C2
SL2

[
∂2

∂t2 −C2
Az
∂2

∂z2

]
∂

∂z

[∫
∂Vz

∂z
dt′

]2

+ N , (9)

where

L1 =
(γ−1)
2C2

S

(
∂

∂ρ
+C2

S
∂

∂p

)
L , (10)

L2 =
(γ−1)ρ0

4C2
S

(
∂

∂ρ
+C2

S
∂

∂p

)2

L , (11)

K =
(γ−1)2κµ̃

2γRρ0
, (12)

N =
1
ρ0
DA

[
∂N6

∂t
− ∂

∂z

(
C2

SN7 + N1

)]
− B0x

ρ0µ0

∂2

∂z∂t

(
∂N2

∂t
+

B0z

ρ0

∂N4

∂z

)
. (13)

The left-hand side of Eq. (9) is the linear magnetoacoustic wave operator. The right-hand side collects the nonlinear and non-

ideal terms. L1 and L2 contain the linear and quadratic contributions from the heating-cooling function and K contains the

thermal conduction where κ0 denotes the thermal conduction coefficient as a function of the equilibrium quantities. R and µ̃ are

the gas, and atomic mass constant respectively. N is a function of the nonlinear terms N j, j = 0..7, which are given in Appendix

A. The right-hand side are assumed to be weak.

B. Nonlinear evolutionary equation

The evolution of the velocity component Vz operates on two scales: a fast scale following the linear propagation of the wave

phase plane, and a slow scale representing the slow evolution of the wave properties due to nonlinearity and non-adiabaticity.

Therefore, the following multiple scales are introduced:

ζ = ϵ1/2 (z −Ct) , τ = ϵ−3/2 t , (14)
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figure. 2: Non-adiabatic terms (|µ1/L1|, |µ2/L2|) and thermal conduction (|χ/K|) as a function of angle θ (in degrees) for the slow (left) and fast

(right) magnetoacoustic modes for a range of values of the plasma-β.
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figure. 3: Nonlinearity (2ϵ/(γ + 1)) as a function of angle θ (in degrees) for the slow (left) and fast (right) magnetoacoustic modes for a range

of values of the plasma-β.

with ϵ a expansion parameter representing the order of a term with respect to the wave amplitude. The speed C corresponds to the

slow or fast magnetoacoustic phase speed, which is given by the solutions of the dispersion relation C4−(C2
A+C2

s )C2+C2
AzC

2
s = 0.

Using Eq. (14) and after a few straightforward manipulations Eq. (9) is written in the nonlinear evolutionary wave equation in a

frame of reference travelling at a speed C:

∂Vz

∂τ
− χ

∂2Vz

∂ζ2 + εVz
∂Vz

∂ζ
+ µ1 Vz + µ2 V2

z = 0 , (15)

where the coefficients are given as

χ = K
C2

S(C2 −C2
Az)

C2(2C2 −C2
S −C2

A)
, (16)

ε =
1
2

(γ + 1)
C2

S(C2 −C2
Az)

C2(2C2 −C2
S −C2

A)

+
3C2C2

Ax

2(C2 −C2
Az)(2C2 −C2

S −C2
A)

(17)

µ1 = −L1
C2

S(C2 −C2
Az)

C2(2C2 −C2
S −C2

A)
, (18)

µ2 = −L2
C2

S(C2 −C2
Az)

C2(2C2 −C2
S −C2

A)
. (19)

Eq. (15) is of the form of a generalised Burgers-Fischer Equation with χ, ε, µ1 and µ2 the magnetically modified coefficients of

thermal diffusivity, nonlinearity, linear and quadratic plasma activity. A version of this equation with µ2 = 0 was investigated
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by [15, 16]. Note that χ, µ1 and µ2 (also ε for propagation parallel to the magnetic field) have the same dependency on the

magnetic field. Also, in the limit of no magnetic field, the coefficients simplify to χ = K, ε = (γ + 1)/2, µ1 = −L1 and µ2 = −L2.

Figures 2 and 3 show the dependency of the coefficients (16)-(19) as a function of the propagation angle θ for the slow and

fast magnetoacoustic waves. As previously obtained by [15], for a unique value of plasma beta, β = 1.2, the coefficients are

independent of θ for both slow and fast magnetoacoustic mode. The plasma beta is defined as the ratio of the gas and magnetic

pressure β = 2
γ
C2

S/C
2
A. Also, for propagation parallel to the magnetic field and for a low β plasma, the non-ideal coefficients,

i.e. χ, µ1 and µ2 are equal to K, −L1 and −L2, respectively, for the slow wave but are equal to zero for the fast wave.

Nonlinear evolutionary Eq. (15) is made dimensionless by normalising time, distance and speed according to

τ∗ = |µ1|τ , ζ∗ =
√
|µ1|
χ
ζ , V∗z =

ε√
χ|µ1|

Vz , (20)

which leads to

∂V∗z
∂τ∗
−
∂2V∗z
∂ζ∗2

+ V∗z
∂V∗z
∂ζ∗
+ α1 V∗z + α2 k V∗z

2
= 0 , (21)

where α1 and α2 are the signs of µ1 and µ2, respectively. In other words, the sign of α1 and α2 refers to the sign of the first and

second derivatives of the heating-cooling function. For example, α1 = 1, α2 = 0 which is the Burgers Equation, corresponds to

a negative slope in L (e.g. positive slope of Lr ifH is constant). The dimensionless parameter k,

k =
|µ2|
√
χ√

|µ1|ε
, (22)

determines the strength of the second derivatives of the heating-cooling function relative to the other effects involved. Near an

extremum in the heating-cooling function, k will become large.

Because the propagation speed of the nonlinear wave can vary from the phase speed of the linear wave we allow for a

correction to the propagation speed, called the envelope speed. Therefore, we make an additional change of frame of reference

to Eq. (21) with new running coordinate s = ζ∗ −CEτ
∗ where CE is the dimensionless envelope speed:

∂V∗z
∂τ∗
−

∂2V∗z
∂s2 + (V∗z −CE)

∂V∗z
∂s
+ α1 V∗z + α2 k V∗z

2
= 0 . (23)

The solution of this nonlinear evolutionary equation is addressed analytically and numerically. Of particular interest are sta-

tionary solutions of Eq. (23), i.e. a wave that under Galilean transformations returns a non-evolving wave and hence does not

depend on the slow time-scale τ∗. We define ψ(s) = V∗z (s) to be a stationary solution described by the nonlinear ODE:

d2ψ

ds2 − (ψ −CE)
dψ
ds
− F(ψ) = 0 , (24)

where we define F(ψ) = α1ψ
(
1 + α2

α1
kψ

)
with CE corresponding to this solution. Because F is a quadratic in ψ, the ODE (24)

allows for up to two fixed points in the system, which are at ψ0 = 0,−α1/α2k with dψ/ds=0. The nature of these fixed points,
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figure. 4: The real (solid) and imaginary (dashed) parts of the linear growth rate, λ, are shown as a function of CE for both fixed points for k =

1 and the four combinations of values of α1 and α2.
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L(
ρ,
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ρ

figure. 5: Heating-cooling function, L, as a function of an equilibrium thermodynamic quantity for CE > 0. The various types of wave

solutions are highlighted (K = kink, AS = auto-solitary and AW = autowave). The circle represents the pure autowave with µ2=0.

and hence the stability of the wave solution near to them, is determined using linear perturbations of ψ, proportional to eλs,

around the solution at a fixed point. It can be easily seen that the characteristic values of λ associated with the fixed points are

given by

λ =
1
2

(ψ0 −CE) ± 1
2

√
(ψ0 −CE)2 − 4

dF(ψ)
dψ
|ψ0 . (25)
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figure. 6: Normalised phase diagram ψ − dψ/ds for (α1, α2) = (1,−1) with k = 1.0 and CE = 0.99.

The different possible solutions of λ for the two fixed points are shown in Figure 4 as a function of CE for the different possible

combinations of signs of α1 and α2. Purely real (imaginary) values of λ correspond to a centre (saddle) fixed point. For µ1 < 0

(α1 = −1), the fixed point at ψ0 = 0 is a centre for CE = 0. The other fixed point at ψ0 = 1/α2k is a saddle, whose absolute value

increases as k decreases. Thus, for a linear heating-cooling function there is only a single centre fixed point. As we shall see in

Sect. III, this case supports autowave solutions. For µ1 > 0 (α1 = 1), the fixed point at ψ0 = −1/α2k is a centre for CE = −1/α2k

and only exists for finite k. The fixed point at ψ0 = 0 is a saddle. The combination of saddle and centre points is a necessary

requirement for the existence of auto-solitary wave solutions. which are investigated in Sect. IV.

Figure (5) shows the magnetoacoustic stationary wave solutions for the different combinations of µ1 and µ2 and with CE ≥ 0.

A wave that evolves to a stationary solution has properties that are independent from the initial conditions and are instead exclu-

sively determined by the plasma itself. Therefore, measurements of stationary waves offers the opportunity of the diagnostics of

non-ideal plasma effects.

III. PERTURBATIVE SOLUTION NEAR FIXED POINT (|CE| . |ψ0|)

The types of solutions around the fixed points are studied using perturbation theory, where we expand ψ and CE around ψ0,

i.e. ψ = ψ0 + ϵψ1 + ϵ
2ψ2 + ϵ

3ψ3 + . . . and CE = u0 + ϵ
2u + . . ., and multiple-scales analysis, where we assume a fast scale s and

a slow scale ϵ2s2. The order O(ϵ) terms in Eq. (24) give the basic form of the solution around the fixed point:

∂2ψ1

∂s2 + σ
2ψ1 = 0 , (26)
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where σ2 = −α1(1 + 2α2ψ0/α1). The fixed point ψ0, where σ2 = −α1, is a centre and gives, to first order, a bounded solution if

α1 = −1. It is a saddle point for α1 = 1. This is the same result as found in the previous section. The fixed point ψ0 = −α1/α2k,

where σ2 = α1, is a centre for α1 = 1 and a saddle point for α1 = −1. The sign of α2/α1 is not constrained. The bounded

solution of Eq. (26) is written as

ψ1 = A(s2) cos
[
σs + ϕ(s2)

] ≡ A cos θ , (27)

The order O(ϵ2) terms in Eq. (24) give an equation

∂2ψ2

∂s2 + σ
2ψ2 = ψ1

∂ψ1

∂s
+ α2kψ2

1 , (28)

which after substituting Eq. (27) has the particular solution

ψ2 =
α2k
2σ2 A2 +

1
6σ

A2 sin 2θ − α2k
6σ2 A2 cos 2θ . (29)

Finally, the order O(ϵ3) terms in Eq. (24) give an equation

∂2ψ3

∂s2 + σ
2ψ3 = −2

∂2ψ1

∂s∂s2
+
∂

∂s
(ψ1ψ2) + 2α2kψ1ψ2 − u

∂ψ1

∂s
. (30)

The terms on the right-hand side of this equation, which have the same periodicity as ψ1, will resonantly drive the solution.

Therefore, to avoid secular behaviour these terms are set to zero, which leads to equations for the amplitude and phase:

dA
ds2

= −A
2

[
u − α2k

4α1

α1

σ
A2

]
, (31)

dϕ
ds2

= − A2

24σ2

1 + 10α2k
α1

α2
1

σ2

 . (32)

In order to have a wave solution with limit cycle behaviour, i.e. the wave amplitude returns to the same value after one period,

the right-hand side of Eq. (31) must vanish. This defines the amplitude A as a function of the parameter k and the envelope speed

CE:

A = ±
√

4α1

α2k
σ

α1
u = ±

√
4α1

α2k
σ

α1
(CE − ψ0) . (33)

For the fixed point ψ0 = 0 the amplitude is real if α1 = −1 and α2/α1 = −1. Then, Eq. (33) becomes A = ±2
√

CE/k. In the limit

of a linear heating-cooling function, i.e. k tends to zero, we require CE to tend to zero as well in order to obtain a finite wave

amplitude.

For the fixed point ψ0 = −α1/α2k and α1 = 1 Eq. (33) becomes

A = ±2

√
α1

α2k

(
CE +

α1

α2k

)
, (34)
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figure. 7: Normalised phase diagram ψ − dψ/ds for the thermally unstable active regime (µ1 < 0) with k = 0. Several solution curves have

been shown. Closed curves correspond to oscillatory solutions.

which is real for CE < 1/k if α1/α2 = −1 and for CE > −1/k if α1/α2 = 1.

From the solution of eq. (24) with the general nonlinear heating/cooling function a limit cycle solution arises (see Fig. 6 for

an example with α1, α2 = 1,-1 and CE ≃ ψ0 = k−1). The solution was initially near non-zero fixed point. The solution curve

then grows via an unstable oscillatory process until a critical amplitude is reached. Then, the system performs oscillations with

steady parameters, this is the limit cycle. The solution strongly dependent on CE, due to the competition between ψ and CE.

The famous Van der Pol equation is an example of similar dynamics, whereby the system undergoes oscillations that tend to

a stationary state [19],[20]. When the phase dynamics evolve to a constant amplitude it defines a limit cycle. The limit cycle is

interesting because, like for the Van der Pol equation, the wave characteristics such as the amplitude are independent of initial

conditions but instead dependent on the system parameters only. In the following sections we shall encounter two scenarios

of stationary magnetoacoustic waves that exhibit such behaviour: autowaves (µ1 < 0, k = 0) and auto-solitary waves in the

presence of linear and quadratic term in the heating-cooling function (k , 0).

IV. AUTOWAVES

Stationary solutions are sought for which the quadratic term in the heating-cooling function is ignored, i.e. k=0. Then, Eq.

(24) reduces to the form

d2ψ

ds2 − (ψ −CE)
dψ
ds
− α1ψ = 0 . (35)
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figure. 8: Velocity profile as a function of ζ at time Cτ/L = 1.01 (thick solid line) for an initial sine wave (thin solid line) for three values of

µ1L
C = −2.01,−4.02, and − 4.82. Also, χ

LC = 0.0038, ε = 1.33, µ2 = 0, k = 0 and θ = 0. The dashed line is the analytic solution given by from

Eq. (39).
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figure. 9: Maximum amplitude of Vz/C as a function of time relative to the wave period, τ/P, for four initial amplitudes V0. The parameters

used are µ1L
C = −4.6, χ

LC = 0.0038, ϵ = 1.33, k = 0 and θ = 0.

The ψ-dψ/ds phase-space corresponding to this equation is shown in Figure 7. Linear stability analysis round this fixed point,

as shown previously, leads to the relation λ=i[CE ± i
√

C2
E + 4α1]/2. This shows that a solution of Eq. (35) is bounded only if

CE = 0 and α1 = −1. For these conditions we have an oscillatory stationary state, which corresponds to a wave travelling at the

magnetoacoustic speed C through a thermally active plasma (µ1 < 0). The de-stabilizing effect of the heating-cooling function

(activity) balances against the nonlinearity and dissipation to lead to the steady state. From Eq. (35) we see that condition dψ/ds

= 1, where d/ds(dψ/ds) = 0, separates in phase space regions with bounded (dψ/ds < 1) from regions with unbounded solutions.

Figure 7 also shows that for large amplitudes, the phase-space curve is no longer up-down symmetric. Hence, for such solutions

the perturbative analysis presented in the previous section is limited.

To explore the large amplitude solutions and to demonstrate that the stationary solution can be reached from a plausible initial



13

perturbation and is auto-oscillatory in nature, we solve the time-dependent evolutionary equation (15) numerically. We have

implemented the McCormack finite difference scheme with accuracy to second order [21]. We consider the initial condition,

Vz(t = 0, ζ) = V0 sin(
nπ
L
ζ), (36)

Where V0 and n are the initial wave amplitude and the wavenumber, respectively. L is the characteristic scale length, and also

the length of the simulation interval, and is related to the wavelength as λ = 2L/n. At ζ = 0, L periodic boundary conditions are

imposed. In particular, for the simulations presented here, 2000 grid points have been used and two wavelengths fitted in the

interval, i.e. n=4.

Figure 8 shows, for a range of values of µ1, the velocity profile to which an initial sinusoidal profile has evolved. For each case,

the wave steepens due to nonlinearity in the plasma and forms a sawtooth-like profile. The wave is prevented from becoming

multi-valued, due to the presence of thermal conduction in the system, hence a magnetoacoustic shock does not occur. Figure

9 shows that for the same plasma parameters the wave evolves to the same velocity profile and amplitude, irrespective of the

initial amplitude V0. This self-organizing property of the wave, which makes it solely dependent on plasma parameters, defines

an autowave solution. For the given values of the plasma parameters, the solutions evolve to a single value within a single period

(τ/P <1). During the transient phase, 0≤ τ/P ≤0.6, the thermal activity drives up the amplitude and can even become supersonic

(Vz/C >1). Larger velocities drive nonlinearity and the velocity profile steepens up, leading to stronger velocity gradients. Then,

thermal diffusion becomes important and dampens the wave rapidly back to the subsonic range. Although the initial amplitude

does not affect the final solution, it determines the rate at which the system becomes fully self-organised. The further away from

the final autowave velocity amplitude we start the longer it takes to reach the final converged state.

The perturbation technique of the previous section did not allow to calculate the amplitude for the autowave. The sawtooth-

like profile provides a basis function to find an analytic description of the wave. The presence of thermal conduction of course

prevents the formation of the exact sawtooth. However, for the purposes here the sawtooth is a good approximation. We assume a

sawtooth (triangular) profile with Vz = Vz,max2ζ/λ and dVz/dζ(λ/2)=0. Figure 8 shows that the sawtooth is a good approximation

of the full solution. We integrate the stationary version of Eq. (15) (and CE=0),

d
dζ

(
dVz

dζ
− ϵ

2χ
Vz

2
)
+
|µ1|
χ

Vz = 0, (37)

over half a wavelength between ζ = 0 and ζ = λ/2 to obtain a condition for the maximum velocity amplitude:[
dVz

dζ
− ϵ

2χ
Vz

2
]λ/2

0
+
|µ1|
χ

∫ λ/2

0
Vzdζ = 0. (38)

Using the sawtooth profile Eq. (38) reduces to

Vz,max =
χ

2ϵλ

(
|µ1|
χ
λ

2 − 8
)
. (39)
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figure. 10: Maximum amplitude of Vz/C as a function of time relative to the wave period, τ/P, for four five values of k. The initial velocity

amplitude is V0 = 0.5C. The parameters used are µ1L
C = −4.02, χ

LCD = 0.0038, ϵ = 1.33 and θ = 0.

or in terms of the dimensionless amplitude A,

A =
1

2λ∗
(
(λ∗)2 − 8

)
, (40)

where λ∗ = (|µ1|/χ)1/2λ. This suggest that autowaves exist for given plasma conditions only if its wavelength, λ is larger than√
8χ/|µ1|. Therefore, the colder or denser the plasma or the larger the slope of the heating-cooling function, the lower the

threshold wavelength becomes. The preference for large wavelengths is due to the importance of thermal diffusion growing

quadratically with wavenumber. Also, this threshold is a factor π/
√

2 smaller than the wavelength threshold for an unstable

plane wave for the linear terms in Eq. (15).

Thus far only a linear heating-cooling function has been considered (k = 0). We examine the role of finite k for the existence

of autowave solutions by solving numerically the time-dependent evolutionary equation (15). Figure 10 shows the maximum

velocity amplitude as a function of time for several values of k. The plasma parameters are the same as for Figure 9 and

V0 = 0.5C. The early time evolution follows the linear case. However, as time progresses, the solution diverges from the final

velocity. The sign of α2 (sign of µ2) determines the stability of the wave. For α2 < 0, the quadratic term of the heating-cooling

function is negative, which added to the negative linear term, drives the solution unstable. For α2 > 0, the opposite situation

occurs. The quadratic term is positive and opposes the linear term, which leads overall to damping of the wave. So, for small k

the self-organizing behaviour of an autowave is preserved the longest. We name such modes quasi-linear autowaves.
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V. AUTO-SOLITARY WAVES

We consider auto-solitary wave solutions that appear with a finite quadratic term in the heating-cooling function, i.e. k ,0.

The fixed points for Eq. (24) are ψ0 = 0 and ψ0 = − α1
α2k with dψ0/ds = 0. For both signs of α1, there is a pairing of a centre

and saddle point. A finite value of CE provides a driving term for instability. The presence of the second saddle point limits the

growth. It is this competitive process that may lead to a possible stable state. Solving for this regime of heating-cooling we shall

show that an auto-oscillatory solution exists. We restrict ourself to the consideration of the µ1 > 0 case (see Fig. 4). However,

the case µ1 < 0 is identical. We investigate the regimes of CE positive but much smaller than ψ0 = −α1/α2k. As CE departs

from ψ0 the wave profile becomes distorted. This distortion is the direct result of the solution curves interacting with both the

saddle point and the centre. Such interactions are termed homoclinic bifurcation [14]. The divergence from the approximately

symmetric phase-plane dynamics can be quantified by comparing the major and minor radii (amplitudes) of the limit cycle,

which are defined as Rmajor = ψmax −ψmin and Rminor = dψ/ds|max − dψ/ds|min, respectively. Figure 11 shows these amplitudes as

a function of CE. The distortion becomes apparent when CE departs from −α1/α2k. Figure 12 shows the spatial asymmetry in s

of the auto-oscillatory pulse. The pulse undergoes preferential steepening on the right side due to the competing heating/cooling

terms, with thermal conduction preventing shock formation.

Figure 13 shows that for CE far from −α1/α2k the stationary solution of Eq. (24) is a limit cycle and takes the form of a simple

closed curve when plotted in phase space (see Fig. 12). However, because in this regime, the limit cycle solution is no longer

approximately symmetric, the technique of multiple-scales is no longer an accurate model. Therefore, another method has to be

applied. The phase space curve suggests that the limit cycle itself satisfies an equation of the form (dψ/ds)2 + ϵa(ψ)(dψ/ds) +

b(ψ) = 0 where ϵ is an ordering parameter. We will refer to this phase-space curve as “the phase space polynomial“.

We obtain equations for functions a(ψ) and b(ψ) in the following way. The polynomial is differentiated with respect to s.

Equation (24) is used to eliminate d2ψ/ds2, i.e. d/ds(dψ/ds) = ϵ(ψ −CE)(dψ/ds) + F(ψ). Thus, we find

[
db
dψ
+ 2F(ψ) − ϵ2a

(
(ψ −CE) +

da
dψ

)] (
dψ
ds

)
= ϵb

[
da
dψ
+ (ψ −CE) − a

b
F(ψ)

]
, (41)

which for a general solution (dψ/ds)(ψ) requires that the left and right-hand side terms are zero. This yields two coupled

differential equations for a and b:

da
dψ
= −2 (ψ −CE) +

a
b

F(ψ), (42)

db
dψ
= −2F(ψ) + ϵ2a

[a
b

F(ψ) − (ψ −CE)
]
. (43)
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Although Eqs. (42)-(43) are a set of two nonlinear equations, which seem more complicated than Eq. (24), it is important to note

that Eqs. (42)-(43) need only to be solved around the closed limit cycle in phase-space whereas Eq. (24) must be solved over

many periods to reach asymptotically the limit cycle. An analytic solution to Eqs. (42)-(43) is found perturbatively by expanding

a and b in powers of the parameter ϵ. The equations contain the term aψ/b which needs to be remain finite. Therefore, we define

a/bψ = λ(ψ) and eliminate a in favour of b and ψ. As before, we expand CE in series of ϵ. Thus,

λ(ψ) = λ0 + ϵ
2λ2 + ... , b(ψ) = b0 + ϵ

2b2 + ... , (44)

CE = CE0 + ϵ
2CE2 + ... . (45)

At lowest order, the system of equations (42)-(43) reduces to

d
dψ

(
b0λ0

ψ

)
= −2 (ψ −CE0)

λ0

ψ
F(ψ), (46)

db0

dψ
= −2F(ψ) , (47)

which has the solutions

b0 = −ψ2
(
α1 +

2
3
α2kψ

)
(48)

λ0 =
6

7α2k
ψ

+
6

5α2k

(
α1

α2k
− ψ

) (
CE0 +

6α1

7α2k

)
ψ−2 . (49)

In order to avoid that λ0 becomes singular at ψ = 0 we require that CE0 = −6α1/7α2k. Then, λ0 = 6/7α2k and

a0 = −
6

7α2k
ψ

(
α1 +

2
3
α2kψ

)
. (50)

Therefore, the phase space polynomial describing the solitary nonlinear wave regimes is approximately equal to

(
dψ
ds

)2

− 6
7α2k

ψ

(
α1 +

2α2k
3

ψ

) (
dψ
ds

)
− ψ2

(
α1 +

2α2k
3

ψ

)
= 0 . (51)

It shows that the auto-solitary curve has dψ/ds become zero if b0 = 0, which is for ψ = 0 and ψ = −3/2α2k.

The calculation of the second order solutions of Eqs. (42)-(43) are given in Appendix B. It shows that for the auto-solitary

type solution the normalised envelope speed, CE, is of the form

CE = −
6

7kα2

[
α1 +

3
7 · 49k2

]
+ · · · . (52)

Equation (52) represents the lower (upper) limit value of CE for a limit cycle solution with α1 = 1 and α2 = −1 (α2 = 1).

Figure 15 shows an example of the dimensionless limit cycle phase (period or wavelength) as a function of CE. It shows
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figure. 15: The dimensionless limit cycle phase, ∆s, calculated numerically from Eq. (24), is plotted as a function of envelope speed CE for

(α1,α1)=(1,-1) and k=1.

that as CE decreases, the oscillation period (and wavelength) grows and becomes infinite at the value of CE given by Eq.

(52). The solution is then a pulse defining a solitary wave. Therefore, using Eqs. (20), (22) and (52), C + ((χ|µ1|)1/2/ϵ) CE =

C − (6µ1/7µ2)(1 + 3µ1ϵ/313µ2
2χ) represents the phase speed of the auto-solitary wave, which is solely dependent on plasma

characteristics. To leading order, the correction to the magnetoacoustic speed depends only on the plasma activity and not on

thermal diffusion. The method for generating the limit cycle without finding the long-time solution of the dynamical equation is

powerful and as far as the authors are aware novel.
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VI. DISCUSSION

We have shown that in a thermally active plasma, where the heating and cooling depends quadratically on thermodynamic

quantities, self-organizing magnetoacoustic waves, so-called autowaves, can exist. For the one-dimensional propagation model

studied here, there is no qualitative difference between the nonlinear dynamics of the slow and fast magnetoacoustic waves.

However, quantitatively, the values of the coefficients of the nonlinear evolutionary equation differs between the two types of

waves. For propagation parallel to the magnetic field in a low plasma-β plasma, only the slow wave feels the plasma activity.

The fast wave degenerates into an incompressible Alfvén wave. In this limit the coefficients of activity are zero.

The sign of the linear and quadratic terms of the heating-cooling function determines the possible stationary solutions. We

have shown that for a negative linear profile, i.e. active plasma, waves are amplified [3] to a stationary sawtooth-like nonlinear

oscillation propagating at the magnetoacoustic speed with an amplitude independent of the initial amplitude determined by the

plasma properties and the wavelength. Autowaves can only exist for a wavelength above a threshold determined by the ratio

of linear activity and thermal diffusion. The extension of the heating-cooling function to include a quadratic term shows that

the autowave no longer exist as the solution grows or decays in amplitude depending on the sign of the quadratic term. If the

quadratic term is small compared with the linear term, then the autowave solution can maintain itself for several oscillation

periods. We have named such type of solutions quasi-autowaves.

The presence of the quadratic term also leads to the existence of an auto-solitary wave, i.e. a pulse-like solution whose am-

plitude and propagation is completely determined by the plasma properties. Unlike the above mentioned autowaves, the solitary

waves require a propagation speed that departs from the magnetoacoustic speed. From studying the phase plane dynamics, we

concluded that the interplay between an unstable node and centre leads to the formation of a limit cycle. A limit cycle is defined

by the preference of phase-space trajectories to evolve to a solution with a constant amplitude in phase space. A novel per-

turbation method has been developed to describe the highly asymmetric nature of the limit cycle as we approach a homoclinic

bifurcation point in phase-space. By assuming a quadratic polynomial for the soliton shape in phase-space, the phase-space

dynamics of the solitary wave and the propagation speed have been characterized.

For typical solar coronal conditions with a temperature and number density of 0.5 MK and 5 1014 m−3, respectively, and

using the radiative loss function by [22], we find a minimum wavelength for autowaves to exist to be equal to 70 Mm. This

wavelength is of the same order as the typical coronal loop length. Therefore, autowaves are expected to exist as global loop

oscillations. However, the role of heating and structuring have been neglected in this simple estimate. The theory of auto-solitary

waves may be applicable to ultra long-period oscillation seen in solar prominences [23] as such nonlinear solutions provide the

possibility for long oscillation periods. It may also be linked to the oscillatory evolution to prominence eruption [24]. This will
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be the focus of a future publication. Moreover, the steep periodic gradients in the wave profile are accompanied by periodic

spikes of the current density. This can lead to the periodic onset of current-driven plasma micro-instabilities that can cause large

quasi-periodic pulsations in magnetic energy releases (see [25, 26]).
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Appendix A: Derivation of nonlinear evolution equation

The details of the derivation of the nonlinear magnetoacoustic wave equation from the non-ideal MHD equations are given

here. The perturbed version of Eq’s. (6)-(5) are split into linear and quadratically nonlinear terms. Higher order nonlinear terms

have been neglected. Also, we consider perturbations that spatially only depend on z. From the induction equation (4), we see

that this implies that the z-component of the magnetic field perturbation is zero. The remaining equations become

∂p
∂t
−C2

S
∂ρ

∂t
= M + N1, (A1)

∂Bx

∂t
+
∂

∂z
(B0xVz − B0zVx) = N2, (A2)

∂By

∂t
− ∂

∂z

(
B0zVy

)
= N3, (A3)

ρ0
∂Vx

∂t
− B0z

µ0

∂Bx

∂z
= N4, (A4)

ρ0
∂Vy

∂t
− B0z

µ0

∂By

∂z
= N5, (A5)

ρ0
∂Vz

∂t
+
∂p
∂z
+

B0x

µ0

∂Bx

∂z
= N6, (A6)

∂ρ

∂t
+ ρ0

∂Vz

∂z
= N7. (A7)
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where the non-adiabatic and nonlinear terms are gathered on the right-hand sides into the quantities N j and M, given by

M = (γ−1)
[
ρ
∂L
∂ρ
+ p

∂L
∂p
+

1
2
ρ2 ∂

2L
∂ρ2

+ ρp
∂2L
∂ρ∂p

+
1
2

p2 ∂
2L
∂p2 + κ0

∂2T
∂z2

]
, (A8)

N1 = −Vz
∂p
∂z
− ρ

ρ0

∂p
∂t
+C2

SVz
∂ρ

∂z
+C2

S
p
p0

∂ρ

∂t
, (A9)

N2 = −
∂

∂z
(VzBx) , (A10)

N3 = −
∂

∂z

(
VzBy

)
, (A11)

N4 = −ρ
∂Vx

∂t
− ρ0Vz

∂Vx

∂z
, (A12)

N5 = −ρ
∂Vy

∂t
− ρ0Vz

∂Vy

∂z
, (A13)

N6 = −ρ
∂Vz

∂t
− ρ0Vz

∂Vz

∂z
− ∂

∂z

B2
x + B2

y

2µ0

 , (A14)

N7 = −
∂

∂z
(ρVz) . (A15)

κ0 is the thermal conduction coefficient as a function of the equilibrium quantities. The terms in M are all considered to be of

the same order as the nonlinear terms, and thus small. Therefore the perturbed thermodynamic quantities, using Eq. (A7), are

equal to

ρ

ρ0
= −

∫
∂Vz

∂z
dt′ ,

p
p0
= γ

ρ

ρ0
,

T
T0
= (γ−1)

ρ

ρ0
. (A16)

Thus, M is rewritten as

M = 2ρ0C2
S

[
L1 + L2

ρ

ρ0
+ K

∂2

∂z2

]
ρ

ρ0
, (A17)

where

L1 =
(γ−1)
2C2

S

(
∂

∂ρ
+C2

S
∂

∂p

)
L , (A18)

L2 =
(γ−1)ρ0

4C2
S

(
∂

∂ρ
+C2

S
∂

∂p

)2

L , (A19)

K =
(γ−1)2κ0

2γRρ0
, (A20)

N =
1
ρ0
DA

[
∂N6

∂t
− ∂

∂z

(
C2

SN7 + N1

)]
− B0x

ρ0µ0

∂2

∂z∂t

(
∂N2

∂t
+

B0z

ρ0

∂N4

∂z

)
. (A21)

Equations (A3) and (A5) can be combined to yield an equation for components of the velocity and magnetic perturbations in

the ignorable direction y, which is the nonlinear wave equation describing the Alfvén wave:

DA Vy =
1
ρ0

[
∂N5

∂t
+

B0z

µ0

∂N3

∂z

]
, (A22)
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whereDA is the Alfvén wave operator defined as

DA =
∂2

∂t2 −C2
Az
∂2

∂z2 . (A23)

Combining Eqs. (A2) and (A4) allow to write Bx in terms of Vz:

DA Bx + B0x
∂2Vz

∂t∂z
=
∂N2

∂t
+

B0z

ρ0

∂N4

∂z
. (A24)

The linear part of this wave equation does not contain quantities associated with the magnetoacoustic waves (velocity and

magnetic field perturbations in the x-z plane or thermodynamic perturbations). Also, the nonlinear terms on the right-hand

side of this equation depend on the product of quantities describing Alfvén (Vy, By) and magnetoacoustic waves (all other

quantities). This implies that if an Alfvén wave has not been excited initially, it will not be generated in this model through

linear or nonlinear coupling to the magnetoacoustic waves. Therefore, the nonlinear evolution of the magnetoacoustic waves can

be studied separately from the Alfvén wave and we take Vy=By=0.

By combining Eqs. (A1), (A6) and (A7) it is found that

[
∂2

∂t2 −C2
S
∂2

∂z2

]
Vz +

B0x

ρ0µ0

∂2Bx

∂t∂z

= − 1
ρ0

[
∂M
∂z
+
∂N1

∂z
− ∂N6

∂t
+C2

S
∂N7

∂z

]
, (A25)

The nonlinear magnetoacoustic wave equation is found by eliminating Bx from Eqs. (A24) and (A26), and using Eqs. (A16)-

(A17):

[
∂4

∂t4 − (C2
A +C2

S)
∂4

∂t2∂z2 + C2
Az C2

S
∂4

∂z4

]
Vz

= 2C2
SDA

[
L1 + K

∂2

∂z2

] ∫
∂2Vz

∂z2 dt′

− 2C2
SDAL2

∂

∂z

[∫
∂Vz

∂z
dt′

]2

+ N , (A26)

where

N =
1
ρ0
DA

[
∂N6

∂t
− ∂

∂z

(
C2

SN7 + N1

)]
− B0x

ρ0µ0

∂2

∂z∂t

(
∂N2

∂t
+

B0z

ρ0

∂N4

∂z

)
(A27)

The nonlinear terms contained in N only depend on perturbation quantities associated with the magnetoacoustic waves.
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Appendix B: Perturbation expansion

At second order, the system of equations (42)-(43) reduces to

da2

dψ
= 2CE2 +

λ2

ψ
F(ψ) , (B1)

db2

dψ
= a0

[
λ0

ψ
F(ψ) − (ψ −CE0)

]
, (B2)

where

a2 =
λ0b2

ψ
+

λ2b0

ψ
, (B3)

Substituting λ0 and CE0, Eq. (B2) becomes

db2

dψ
= −λ0

7
b0, (B4)

from which we find b2 to be

b2 =
λ0

6 · 7ψ
3[2α1 + α2kψ] . (B5)

Using Eq. (47), Eq. (B2) reduces to

d
dψ

(
b0
√
|b0|λ2

ψ

)
=

[
2C2 − λ0

d
dψ

(
b2

ψ

)] √
|b0| . (B6)

Using a change of variable to ψ = (z − α1)
(

3
2α2k

)
, Eq. (B6) is readily integrated:

λ2 = −
λ2

0α2

4 · 7k

[
z3 − 19α1

7 z2 + (11 − d) z
5 + (d − 1)α1

3

]
(z − α1)2 (B7)

Where d=14 · 8α2CE2k/λ2
0. For ψ = 0, which corresponds to z = α1, the denominator becomes zero. In order for λ2 to remain

finite, the numerator must vanish as well for z = α1. This forces the parameter d to be equal to d = −8/7. Therefore, we find a

condition for CE2:

CE2 = −
18

74α2k3 (B8)

Equation (B9) then becomes;

λ2(ψ) =
λ2

0α2

6 · 7k
[
3α1 + α2kψ

]
. (B9)

Note that while λ is a constant to leading order, its second order correction linearly depends on ψ, i.e. Using Eqs. (B3) and (B9),

a2 is found to be

a2 =
λ2

0ψ

42

[
−3α2

k
− α1ψ +

kα2

3
ψ2

]
. (B10)
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