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Introduction

Having been asked to explain how to differentiate the magnitude of a function, this document
has been created to explain the general method of doing so and also attempts to explain why
and how this method works.

Derivation

It is known that for y(x) = f(x)1

dy

dx
= lim

δx→0

f(x + δx)− f(x)
δx

.

From this it can be seen that for y(x) = |f(x)|

dy

dx
= lim

δx→0

|f(x + δx)| − |f(x)|
δx

= lim
δx→0

f(x)
|f(x)|

f(x + δx)− f(x)
δx

=
f(x)
|f(x)|

df

dx
. (1)

This result is true for all f(x) and should be apparent if you closely consider what’s happening.
Don’t worry though, that will be done for you further down. This result can also be obtained
directly by using the chain rule and the result you were given in Webwork that d|x|

dx = x
|x| :

dy

dx
=

d

dx
(|f(x)|)

=
d|f |
df

df

dx

=
f

|f |
df

dx
. (2)

1An equation y(x) may be given in terms of some expression containing functions and or terms of powers of
xn. This expression is usually referred to as f(x).



Showing the Result Quoted in Webwork

Consider the graph of y(x) = x in figure 1.

x

Figure 1: Origin (0:0) is at the center.

Consider the two regions x ≥ 0 and x < 0. If we differentiate y(x) in these regions we get

(
dy

dx

)
x≥0

=
(

dy

dx

)
x<0

= 1.

This is expected since the gradient is unchanged for various values of x.

Now consider the function y(x) = |x|. This expression is not saying that we consider only positive
values of x. It’s saying that y will simply always be positive regardless of the value of x. So, this
function is represented (for all x) by figure 2.

abs(x)

Figure 2: (0:0) at center.

Here it can be seen that differentiating y(x) = |x| in the regions x ≥ 0 and x < 0 gives

(
dy

dx

)
x≥0

= 1 and
(

dy

dx

)
x<0

= −1.

By inspection, this derivative can be written more compactly as

dy

dx
=

x

|x|
. (3)
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The graph for this derivative is in figure 3.

x/abs(x)

Figure 3: (0:0) at center and discontinuous at x = 0.

Eq(3) is the expression that was quoted to you in webwork and you can see it’s true since dividing
a scalar by its magnitude gives unity with the original sign (±) left intact. So, if you were given
x = 6 and x = −3 the respective gradients would be

dy
dx = 6

|6| = 6
6 = 1

dy
dx = −3

|−3| = −3
3 = −1

In both cases, the magnitude of dy
dx was 1 as expected, only the sign changed as it clearly should

have (according to figure 3).

Another illustration

Consider now the function y(x) = sin(x) which, as we all know, is given as figure 4.

sin(x)

Figure 4: Origin is on the left i.e. 0 < x < 2π.

Again, y(x) = |sin(x)| does not preclude any values of x, it simply means y is always positive as
shown in figure 5.

The function sin(x) gives positive and negative values for various x:

y(x) = sin(x) for 2nπ < x < (2n + 1)π
y(x) = −sin(x) for (2n− 1)π < x < 2nπ
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abs(sin(x))

Figure 5: 0 < x < 2π.

Differentiating these gives

dy

dx
= cos(x) for 2nπ < x < (2n + 1)π

dy

dx
= −cos(x) for (2n− 1)π < x < 2nπ

The derivatives are both cos(x) except for a difference in sign but since dy
dx is negative for all

x-values that y is negative, sin(x)
|sin(x)| can be used to write the derivative more compactly as

dy

dx
=

sin(x)
|sin(x)|

· cos(x) for all x. (4)

Considering figure 5 and plotting eq(4) both give the same graph for the derivative of |sin(x)|.
This should be obvious but just in case it’s not, let’s take this a step further. Eq(4) is basically
just a cos(x) curve with an extra factor sin(x)

|sin(x)| giving a ±1 where appropriate. The graph for
cos(x) is in figure 6.

cos(x)

Figure 6: 0 < x < 2π.

Multiplying this by −1 whenever sin(x) is negative, i.e. whenever π < x < 2π, we get figure 7.

This result is obtained consistently by various methods as you’ve now seen. Note, the derivative
of |sin(x)| has discontinuities at nπ for all integer n.
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(sin(x)/abs(sin(x)))*cos(x)

Figure 7: 0 < x < 2π. Discontinuities at nπ.

Examples

The following shows how to calculate the derivative of some functions analytically using eq(1).

Example 1, consider y(x) = |x3 + 2x2 + 3|.

dy

dx
=

x3 + 2x2 + 3
|x3 + 2x2 + 3|

· (3x2 + 4x).

Example 2, consider y(x) = e2x|x2 + 3x|.

dy

dx
= 2e2x|x2 + 3x|+ e2x · x2 + 3x

|x2 + 3x|
· (2x + 3).

Example 3, consider y(x) = x2|cos(x)|.

dy

dx
= 2x|cos(x)| − x2 · cos(x)

|cos(x)|
· sin(x).

Some for you to try

Find the first and second derivatives of the following and try plotting them to see what they
look like.

1. y = e|x|

2. y = cos|x|

3. y = (4x3 − 3) · tan|x3|

4. y = a|x| where a is some base greater than 0.

5. y = ax2−|x| where a is the same base.

6. y = 1
ln|x+2| .

I have not evaluated these myself but if anyone actually bothers to do them and would like to
check their answers, let me know and we’ll arrange something.
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An Aside

Someone asked about y(x) = sin|x| specifically. This is considered here as a hint to the above
questions. The graph is in figure 8.

Differentiating this using the chain rule gives

dy

dx
=

d|x|
dx

· cos|x|.

The function cos(x) is symmetric i.e. cos(−x) = cox(x). Similary, cos|x| = cos(x). Also, it is
known that d|x|

dx = x
|x| , so

dy

dx
=

x

|x|
· cos(x).

This graph is shown in figure 9.

sin(abs(x))

Figure 8: Origin (0:0) at center and −2π < x < 2π.

(x/abs(x))*cos(x)

Figure 9: −2π < x < 2π. Discontinuos only at x = 0.

If you have any problems or find any glaring errors in this document, please let me know.
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