## Essential Graduate Math I : Basic Calculus

## 1. Analyse a function - basic points of interest

Give a full analysis of the function $f(x)=A \sin (x / \pi) \exp (-B x)$, where $x$ is real and $B$ is real and positive. Your discussion should include:
a) all roots,
b) points of local and global maxima / minima,
c) behaviour for $x \rightarrow 0$ and for $x \rightarrow \pm \infty$,
and d) a drawing of a graph.
Moreover, express the function as a sum of an even and an odd function of $x$.
2. Differentiation, usually easy, but you need an idea here ...

Differentiate $f(x, y)=x^{x} \sin ^{-1}(y /(y+1))$ with respect to $x$ and $y$.

## 3. Taylor series

a) Expand the real function $f(z)=A \ln (B z)$ with $A$ and $B$ being real and positive in a Taylor series. What would be the natural choice for the point to expand about?
b) Expand the function $f(x, y)=x^{6} \exp (-x) \sin (y) / y$ in a Taylor series about $x=1$ and $y=\pi$.
c) Construct the plane which is tangential to the function $f(x, y)$ at the point $x=1$ and $y=\pi$.

## 4. Integration

Evaluate the indefinite integrals
a) $\int \cos ^{-1}(x) d x$
and b) $\int \frac{1}{x^{4}+x^{3}+4 x^{2}+x+3} d x$.
(hint: easy roots!)
c) Prove that the following relation holds

$$
\int_{0}^{\infty} x^{n} \exp \left(-x^{2}\right) d x=\frac{1}{2}(n-1) \int_{0}^{\infty} x^{n-2} \exp \left(-x^{2}\right) d x
$$

d) Use this result to calculate $\int_{0}^{\infty} x^{5} \exp \left(-x^{2}\right) d x$.

## 5. Finally, all combined

a) Differentiate the following integral with respect to $x$

$$
\int_{\sin x}^{x^{5}} \exp (x \cdot t) d t
$$

b) Expand the following integral for small $x$

$$
\int_{x^{2}-A x}^{x^{2}+A x} t^{-2} \sin ^{2}(t) \exp \left(-t^{2}\right) d t
$$

c) What is $\lim _{x \rightarrow 1}\left\{[\ln (x-1)]^{-5}(x-1)^{4} \tan (x-1)^{2}\right\}$ ? Is there a difference if one approaches unity from $x<1$ or from $x>1$ ? When would that be the case?

