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ABSTRACT

The density structuring of the solar corona is observed at large scales (loops and funnels), but also at small scales (sub-structures
of loops and funnels). Coronal loops consist of thin density threads with sizes down to (and most probably below) the resolution
limit. We study properties of torsional Alfvén waves propagating in inhomogeneous cylindrical density threads using the two-fluid
magnetohydrodynamic equations. The eigenmode solutions supported by such a structure are obtained and analysed. It is shown
that the dispersive and dissipative effects become important for the waves localised in thin threads. In this case, the Alfvén wave
continuum is replaced with a discrete spectrum of Alfvén waves. This mathematical model is applied to the waves propagating in
coronal structures. In particular, we consider ~1 Hz Alfvén waves propagating along density threads with a relatively smooth radial
profile, where a density contrast of about 1.1 is attained at radial distances of about 0.1 km. We found that the dissipation distance of
these waves is less than the typical length of hot coronal loops, 50 Mm. Torsional Alfvén waves are localised in thin density threads
and produce localised heating. Therefore, these waves can be responsible for coronal heating and for maintenance of small-scale

coronal structuring.
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1. Introduction

The solar atmosphere is highly structured in density and mag-
netic field. The magnetic field of the Sun interacts with the
plasma and determines the processes taking place in the outer
solar atmosphere. The field in the atmosphere is structured in
the form of open coronal funnels and closed coronal loops.

One of the early models for the magnetic field was devel-
oped by Kopp & Kuperus (1968) and Kopp (1972). These au-
thors assumed that the field is structured only as coronal fun-
nels. According to this model, the magnetic field lines emerge
from the lanes of the chromospheric network and spread as they
go upwards in the corona. This model could explain the emission
of EUV lines, which shows a pattern that reproduces the granu-
lation. Gabriel (1974) improved Kopp’s model of the magnetic
field by dividing the transition region into two: the primary and
the secondary region. The primary transition region is located
inside the funnels in the places where most of the EUV radiation
comes from, while the secondary transition region is in the area
between two funnels and emits only a small amount of radiation.

The initial picture was completed by introducing closed
structures: coronal loops. The loops are smaller than the funnels
and do not extend very high in the corona. The existence of loops
can explain the difference between the magnetic field maps in the
photosphere and the spectrograms in coronal lines. According to
the early models, EUV images and magnetograms should have
a similar pattern, strong emission being associated with strong
magnetic field. However, there are regions with strong field that
do not show high emission in the corona and these are the places
where the loops are. This coronal magnetic field model, consist-
ing of both closed and open structures, is commonly accepted.

In addition to the magnetic field, density is also highly struc-
tured in the corona. This can be seen in X-ray images of the
corona taken from space by rockets and telescopes. Pictures
from Skylab (Vaiana et al. 1973) revealed that the coronal
plasma is concentrated mostly in the loops. More recent pictures,
taken by TRACE, show that coronal loops are not uniform, but
consist of thin threads with sizes down to the resolution limit.
Based on these observations, Reale & Perez (2000) constructed
a model in which loops are considered to be made of bundles of
threads, independent of each other and in different physical con-
ditions. Aschwanden & Nightingale (2005) made a quantitative
study on the multithread coronal loops and concluded that the
elementary isothermal thread of the loop has a width of about
2000 km. It is possible that the isothermal thread has a finer den-
sity structuring, which cannot be observed because the size of
the structures is smaller than the resolution limit. In this paper,
we consider that the isothermal thread consists of multiple thin-
ner density striations, which we regard as the elementary threads
of the loop.

In solar physics and heliospheric physics, studies of magne-
tohydrodynamic (MHD) waves in the 1970 s and 1980 s were
motivated by: (1) the observation of Alfvén waves in the so-
lar wind (Belcher & Davis, 1971; see also review by Hollweg
1990), (2) the anticipation due to theoretical arguments that the
various magnetic structures in the solar atmosphere had to sup-
port MHD waves (e.g. Spruit 1982; Roberts et al. 1984), and (3)
the possibility that MHD waves contribute to the heating of the
solar corona (Hollweg & Yang 1988; Grossmann & Smith 1988;
Poedts et al. 1989, 1990).

The theory of waves in magnetic structures was initiated by
Roberts et al. (1984) more than 20 years ago. They modelled
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the coronal loop as a straight cylinder with constant plasma den-
sity and constant magnetic field in the interior, as well as in the
exterior. Applying the MHD wave theory to this loop model,
the authors discovered that such a structure can support a di-
versity of modes, which are classified in two groups: Alfvén
waves and magnetosonic waves. The Alfvén waves propagate
along the equilibrium magnetic field and their perturbations are
perpendicular to the propagation vector. In cylindrical geome-
try with axial magnetic field, there exist Alfvén waves with only
azimuthal components for the magnetic field and velocity per-
turbations. These waves are called the torsional Alfvén waves.
They are axis symmetric modes, with the azimuthal wavenum-
ber m = 0, so they do not produce pressure or density varia-
tions. For the gas/magnetic pressure ratio 8 < 1, the magne-
tosonic waves have two classes of modes of oscillation: slow
mode (propagating with a velocity close to the sound speed)
and fast mode (propagating with a velocity close to the Alfvén
speed). The slow and fast modes are also classified relative to the
azimuthal wave number, m, as sausage (m = 0), kink (m = 1) and
flute modes (m > 2). The sausage mode is symmetric about the
axis of the cylinder, while the kink mode in antisymmetric. After
the launching of solar telescopes SOHO and TRACE, an enor-
mous amount of data became available, which can be compared
with the theory.

Torsional modes are difficult to observe because, as they
are incompressible, the density is not perturbed, so they cannot
be seen in variations of the emission lines. However, torsional
Alfvén waves can be detected by measuring the broadening of
emission lines due to the Doppler effect. Early observations with
Skylab show that the line widths increase with height above
the limb. More recent observations, performed with SOHO
(Banerjee et al. 1998; Doyle et al. 1999) in coronal holes, also
show a line broadening up to 1.2 solar radii, then a constant pro-
file up to 1.5 solar radii and then a sharp increase. In the equato-
rial quiet Sun (Harrison et al. 2002) a narrowing of coronal lines
above 50 000 km was noticed. This was considered as the first
evidence of dissipation of shear Alfvén waves. However, con-
trary to Harrison, the results obtained by Wilhelm et al. (2004)
indicate a broadening of the line with height in both the equato-
rial part and polar coronal holes. Zaqarashvili (2003) suggested
a method to calculate the velocity of standing torsional Alfvén
waves, by measuring the wavelength and the period from spec-
tral observations. The wavelength is two times the distance be-
tween two antinodes, which exhibit a line broadening in the
spectrum, while the period is measured taking spectra at differ-
ent times at the same height.

Torsional Alfvén waves can be used as a tool for coronal
seismology. In a recent paper, Zaqarashvili & Murawski (2007)
obtained the dispersion relation and the wave profile for stand-
ing torsional Alfvén wave in a coronal loop with varying den-
sity along the loop. Knowing the wave frequency from spectral
measurements, the loop length and the inhomogeneity parame-
ter, the Alfvén velocity at the loop apex can be calculated, and
afterwards the magnetic field.

In this paper we study the propagation and dissipation of tor-
sional Alfvén waves in the elementary density structures of the
corona. The waves are assumed to be launched at the coronal
base.

The paper is structured as follows. In Sect. 2 we present the
model for the density thread and we write the equations used
to describe the wave supported by the thread. We then derive
the governing equation for the wave propagation. In Sect. 3 we
look for a solution to the wave equation. Choosing an appropri-
ate profile for the Alfvén velocity, an analytical solution for the
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equation is found, after making some approximations. The dis-
persion relation is obtained numerically. In Sect. 4 we investigate
the wave damping due to viscosity and resistivity and we com-
pute the value for the damping distance in coronal conditions.
Section 5 contains the discussion and conclusions.

2. Plasma model and basic equations

We model the elementary density structure in the corona by a
cylindrical tube with enhanced density. In the interior of the
tube, up to a radius R, the plasma is homogeneous and it is char-
acterised by constant plasma parameters: density, pressure and
magnetic field. The magnetic field is straight and in the z direc-
tion. For r > R the plasma density decreases, but the magnetic
field remains constant.

In order to keep the pressure balance in the inhomogeneous
region, the magnetic pressure must also vary, together with the
gas pressure. This happens only if the magnetic field is inho-
mogeneous, which is contrary to the assumption made above.
However, since in the corona the plasma S is very low, only a
small change in the magnetic field produces a considerable in-
crease of magnetic pressure, which balances the decrease of gas
pressure. The change in the magnetic field is so small that we
can consider the field to be constant everywhere.

Our purpose is to study the propagation of torsional Alfvén
waves with m = 0 in elementary density structures. We use the
two-fluid model for the plasma to calculate the profile of the
wave and the dispersion relation. We then compare the results
with the torsional Alfvén wave in the previously studied MHD
model. In ideal MHDs, the picture of the Alfvén wave is very
simple: an hydrodynamic-electromagnetic wave, which propa-
gates along the magnetic field lines. The plasma oscillates per-
pendicular to the magnetic field and there are also oscillations of
electric and magnetic field coupled with the plasma motion. The
restoring force is the magnetic tension, which is balanced by the
inertia of ions and there are no pressure changes associated with
the wave. It propagates at the Alfvén velocity, vy = By/ \/é?po,
which depends on the local values of the equilibrium density, pg
and magnetic field, By.

Looking at the Alfvén wave in the framework of the two-
fluid model, its picture becomes more complicated than in ideal
MHDs. In this case, there are pressure modifications in the equa-
tions, which lead to new and interesting effects. Accounting for
electron parallel dynamics (electron pressure) and cross-field ion
dynamics (ion gyroradius), the picture of the Alfvén wave com-
plicates with the inclusion of a parallel electric field and parallel
motions of the electrons.

The two-fluid MHD equations are:

dv; i
mmi = giE + Lo, x B-Vp; (1)
dr c
do. qe )
NeMe—— = g E + —v. X B — Vpe; 2)
dr c
% + V(nivy) = 0; 3)
on
= V) = 0; 4)
V-B =0; (5)
V-E = 4ne(n; — n.); (6)
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where the indices i and e refer to ions and electrons, v is the ve-
locity, p is the gas pressure, n the number density, E the electric
field, B the magnetic field, j the current, g; the ion charge den-
sity, g. the electron charge density, ¢ the speed of light in vacuum
and e the elementary charge.

In what follows, it is more convenient to write the magnetic
and electric fields with the use of the scalar potential, ¢ and vec-
tor potential, A, as:

©)

B = VXA. (10)
We look for a solution in the form of linear waves and we write
each of the quantities as a sum of an equilibrium quantity and a
perturbed quantity:

A->A)+ A,

¢ > do+ .

Since we focus on torsional waves, we assume that the pertur-
bation of the magnetic field is different from zero only in the ¢
direction.

After some algebra (see Appendix), Egs. (1)-(8) become de-
coupled and reduce to the following equation for the z compo-
nent of the magnetic potential:

11
12)
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=0, (13)

where p; is the ion gyroradius, ps is the ion gyroradius at the
electron temperature, v, is the Alfvén velocity and n is the equi-
librium number density.

In the derivation of this equation we assumed that 270? < 1,

where A; = c¢+/m;/4nnpe? is the ion skin depth. With this con-
dition we neglect the cyclotron effects and study only the waves
with frequencies much smaller than the ion cyclotron frequency.
Since the ion cyclotron frequency is of the order of 10° Hz,
this approximation is valid for all waves with frequencies below
10* Hz.

Equation (13) governs the behaviour of the torsional Alfvén
waves with m = 0. After solving it and finding A,, we can calcu-
late other quantities related to the wave.

In the framework of ideal MHD theory, the solution for tor-
sional Alfvén waves is well known (Ruderman et al. 1997a). The
waves propagate locally, on surfaces of constant flux, and the
phase speed varies with space, w/k = va(#p). According to this
relation, the frequency spectrum of the waves is continuous. The
eigenfunctions are any functions for the interior homogeneous
region and delta functions, 6(r — ry), for the inhomogeneous re-
gion. The delta functions are singular at the magnetic surface
with r = ry and zero everywhere else in space, therefore they
are localised. In the next section we will see that the thermal
effects, taken into account with the two-fluid approach, remove
the singular continuous spectrum and introduce a non-singular
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discrete spectrum for torsional Alfvén waves. Torsional Alfvén
waves were studied in dissipative MHD for 1D cylindrical mag-
netic tubes by Ruderman et al. (1997a). Ruderman et al. (1997b)
studied them in a 2D coronal arcade model as a possible heating
mechanism. In 3D, the first nonlinear resistive MHD simulations
of coronal loop heating by resonant absorption of Alfvén waves
were done by Ofman & Davila (1995). In the present paper we
go beyond the classic ideal and dissipative MHD formulation
of torsional Alfvén waves. In view of very short length scales
of density structures across the coronal loops we adopt a two-
fluid formulation of torsional Alfvén waves. The most important
finding is that the continuum of frequencies with Alfvén waves
living on each magnetic surface is replaced by a finite number of
discrete torsional Alfvén waves.

3. Solutions of wave equation

In this section we look for a solution to Eq. (13), in order to de-
termine the wave profile and to calculate the dispersion relation.

After Fourier-analysing in z, we consider the solution in the
form of one-Fourier harmonic:

9 przn = gA(r)el(kz ),

or
where w is the frequency of the wave, k is the wavenumber in
the z direction, and A = A(r) is the wave amplitude dependent
onr.

Introducing the solution into Eq. (13), we obtain the follow-
ing differential equation for A:

(14)

0 0 ,0 1 w? 0A
A 1A -1|—=—|=0. (15
8r[p16 AL +n0rp58 VlOA +r[k22 Jar:l (15)

We make all the quantities dimensionless, i.e. the distances by

\[P} + pi, the magnetic field by the equilibrium magnetic field,

the velocities by the Alfvén velocity in the interior region, the
density by 47 multiplied by the density in the interior region.
We take into account that for a smooth density variation ng/r <
0.5-dny/dr and use the notation ¥/(r) = dA(r)/dr to write Eq. (15)

as:
d* 10 w? 1 c

y Y =€ 16
a2 T rer " [kzvi(r) r2) r (10

Equation (16) is an eigenmode equation, in which W is the eigen-
function and w/k is the eigenvalue.

First, we choose a particular profile for the Alfvén velocity,
va, then we look for a solution to Eq. (16). In order to keep the
equation simple and tractable analytically, we adopt the follow-
ing r-dependence:

1, r <R;

vA(r) = { R+l r
F o R<r

A7)

The profile for the Alfvén velocity is shown in Fig. 1. According
to this model, the density is constant inside the tube up to a radius
R, then the density decreases slowly. The size of the structure is
the length over which the density varies significantly, and in our
case it is about 0.1 km. This should not be confused with the
radius of the homogeneous region, R, which is about 10 m.

With this profile for the Alfvén velocity, the solutions of
Eq. (16) are:

arJr (), r <R,
Y(r) = bW, 2 Qur), R<r,

T M2

(18)
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where J; is an ordinary Bessel function of the first kind, W is a
Whittaker function, y; = /(w/k)? — 1 is the radial wavenumber

forr <R, up = \/1 — (w/k)* R?/(R + 1)? is the radial wavenum-
ber for R < r, and a; and b, are real arbitrary constants.

To obtain a solution for the whole interval, we have to con-
nect the solutions obtained in the two regions and impose the

boundary conditions at r = 0 and at » — oo. These conditions
are:

— the solution must be regular at the origin;
— the solution has to be zero at infinity (with this condition we
consider only confined waves and exclude leaky waves);

— the solution and its first derivatives have to be continuous at
r=R.

By connecting the solutions and its first derivatives, we impose
the continuity of physical quantities, such as: the magnetic field
(proportional to the solution itself), the current in the z direction,
J. and the electric field in the z direction, E, (both proportional
to the solution and its first derivative).

From these conditions we can calculate b; in terms of a; and
obtain the dispersion relation. In our case, it is a transcendental
equation in w/k, which can be solved numerically. The numeri-
cal solutions obtained for w/k indicate that the wave spectrum is
discrete in phase velocity. The nature of the discrete spectrum is
due to the boundary conditions. In this way, the geometry of the
physical system ‘“chooses” the characteristics of the wave that
propagates in it, or the wave propagates only if it is allowed by
the shape of the medium.

We present some results obtained for the following parame-
ters: Bo = 50 G, T; = T. =2 x 10°K, ny = 3 x 10° cm™3. We
choose the inner radius of the cylinder to be R = 10 (in effective
gyroradii).

From Fig. 1 we see that the Alfvén velocity has the value 1
in the interior of the cylinder, up to a radius R = 10; for r > R
it increases slowly as 1.17/(r + 1), going asymptotically to 1.1
for large r. The dots represent the values of 7 (Alfvén resonance
point in ideal MHDs) for which the dispersion relation is satis-
fied. The Alfvén resonance point, ry, is related to the phase ve-
locity, w/k, by the formula w/k = va(rp). Each dot corresponds
to a wave that has a particular profile in r and propagates with
its own speed. In one-fluid MHDs the wave spectrum in contin-
uous, so there are waves propagating with any speed between
1 and 1.1, but in two-fluid MHDs only some phase speeds are
allowed. The phase velocity for the first mode (called also the
ground mode) is 1.03, for the second mode it is 1.06.

The possible excitation mechanisms for the ground mode,
which has the largest radial wavelengths, include convective
plasma motions at magnetic footpoints and magnetic restructur-
ing at all levels from photosphere to corona. The wave profile
for this mode, given by the expressions in Egs. (18), is shown in
Fig. 2. The magnetic field is zero in the centre of the cylinder,

then has a maximum and decreases again to zero. The current
is maximum in the centre, decreases to negative values and then
goes to zero. The profiles for both the current and the magnetic
field are confined in a region with the radius about 30. Therefore,
the ground mode is localised in the centre of the thread, where
the density is enhanced.

4. Collisional dissipation of torsional Alfvén waves

To give a realistic description of the waves, we need to take into
account dissipation. Voitenko & Goossens (2000) have shown
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Fig. 1. Model of thread in cylindrical geometry. The plot shows the pro-
file for the Alfvén velocity: constant until R = 10, then slowly increas-
ing as 1.1r7/(r + 1). The Alfvén velocity is made dimensionless by the
Alfvén velocity in the interior and the radius is expressed in gyroradii,

[P} + p2. The dots show the Alfvén resonance points in ideal MHDs.
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Fig. 2. Wave profile for the first mode. The plot shows the current in the
z direction, j. (dashed line), and the magnetic field in the ¢ direction, B,
(full line), as a function of the distance from the centre of the cylinder.
The current is normalised by the current at » = 0 and the magnetic field

by (\Jp? + p?/va)j: at r = 0.

that the collisionless Landau damping of ~1 Hz kinetic Alfvén
waves in active regions is much weaker than the collisional
damping. In this case, the main mechanisms that cause damping
of torsional Alfvén waves in coronal conditions are shear vis-
cosity and resistivity. We take into account that the ion viscosity
is much higher then electron viscosity, so electron viscosity is
neglected. The viscous damping occurs due to friction between
ions as they move in the ¢ direction and collide with other ions,
while the resistive damping is due to the decrease of the parallel
current as the electrons collide with ions.

The damping length of the wave can be obtained by us-
ing a method adopted by Gordon & Hollweg (1983). Following
Gordon & Hollweg, we equate the divergence of the Poynting
flux with the volumetric heating rate and obtain the following
formula for the damping distance:

L= ifE,B(prdr

o lRe(sz*)rdr+ povi %, 2rdr’
fz z f 1( ar

19)
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where vi] is a coefficient of shear viscosity. The Joule heating
term is given by the expression:

1 m67| T

= 1% 20
27’!062 Jz ( )

1 *
2Re(]ZEz) =
where V is proportional to electron collision frequency, ve, as
v = 0.51v.. The wave quantities in Eqs. (19) and (20) are
the ones calculated neglecting dissipation. In comparison with
Eq. (50) by Gordon & Hollweg, in our Eq. (19) for the dissi-
pation distance, we dropped the thermal conduction and radia-
tive dissipation terms, which are weak for kinetic Alfvén waves.
Instead, we take into account the Joule heating, which is strong
for kinetic Alfvén waves.

Equation (19) is derived using the law of conservation of
electromagnetic energy. Let us consider a small volume ele-
ment of the cylinder in which the Alfvén wave propagates.
Quantitatively, the law of energy conservation states that the rate
of energy variation in the volume element is equal to the varia-
tion of electromagnetic flux and the energy loss from the field to
the particles. Since we consider damping in space, not in time,
the total field energy in the volume is constant. Therefore, we can
equate the negative variation of the Poynting flux to the terms
that represent the energy transfer rate (through viscosity and re-
sistivity). The field does work on the particles and accelerates
them; part of the energy is given back to the field, but part of it
is lost due to friction of layers of particles with different veloci-
ties (viscosity) and collisions of electrons with ions (resistivity).
Because the wave profile is changing with r, there is a different
amount of energy transferred at different points, such that the
transfer due to the Joule effect is maximum in the centre of the
cylinder, but the energy exchange due to viscosity is maximum
where the velocity gradient is the biggest. Therefore, this will
create small thermal anisotropies inside the plasma. The temper-
ature gradient can be flattened, causing heating of the plasma, or
it can propagate away from that region, causing cooling of the
medium.

In Eq. (19), the wave quantities are averaged over time and
integrated over r and z. Using this formula, we calculate numer-
ically the damping length for a wave propagating in plasma with
typical coronal parameters. They are the same as the ones used
inSect.3: By=50G, T; = T. =2 x 10° K, ny = 3 x 10° cm™3.
The inner radius of the density tube is R = 10, made dimension-
less by the effective gyroradius. Considering that the torsional
Alfvén wave has a typical wavelength 1 = 2 x 10® m, we obtain
for the damping length the value 42.5 x 10® m. Therefore, the
wave decays in approximately 20 wavelengths.

Further, we investigate the dependence of the damping
length on the inner radius R of the tube. In Fig. 3 we plot the
damping length as a function of R and it can be seen that the
damping length increases with R. This is due to the fact that
the perpendicular wavelength is proportional to R, so the greater
the inner radius, the bigger the wavelength and the smaller the
damping.

5. Discussion and conclusions

We found that the localised torsional Alfvén waves can exist in
small-scale density threads of the solar corona. For threads mod-
elled as density tubes, in which the density decreases from 1 at
r =010 0.97 at r = 15 gyroradii, the effects due to finite Larmor
gyroradius are significant. The wave profile and properties of
torsional Alfvén waves are very different to those found with
the one-fluid MHD description. The two-fluid torsional Alfvén

925

1.25

o
T T T T Y T Y T T T T T T T T I T

-
N

0.75

05

LI B B S B B B B B B B H B S S m e |
50 7.5 10.0 125 15.0
H

Fig. 3. Damping distance as a function of the inner radius of the density
tube. The damping distance is normalised by the average length of a
coronal loop, L = 5 x 107 m, and R is expressed in gyroradii.

waves propagate along the background magnetic field and have
a localised structure in the radial direction. The waves are lo-
calised in the region of density enhancement and vanish be-
yond the resonant point, where the local Alfvén velocity is equal
to their phase velocity. Therefore, they are trapped waves, for
which the elementary thread acts as a waveguide.

The solutions of the dispersion relation are discrete in phase
velocity and each value of the phase velocity corresponds to a
different mode, with its particular profile in the r direction. This
means that the waves are dispersive with respect to the effec-
tive perpendicular wavenumber, but they are non-dispersive rela-
tive to the parallel wavenumber. These waves are kinetic Alfvén
eigenmodes supported by cylindrical density tubes. For a den-
sity thread with R = 10 and an Alfvén velocity varying from 1 at
R =10to 1.05 at r = 20 and going asymptotically to 1.1, there is
an infinite number of modes. The wave spectrum is discrete for
phase velocities below 1.1 and continuous above 1.1. The first
eigenmode has the phase velocity (w/k); = 1.03 and the reso-
nance point at r; = 14, the second eigenmode has (w/k), = 1.06
and r, = 25 (the Alfvén velocities and phase speeds are given
relative to the interior Alfvén velocity and distances are ex-
pressed in effective gyroradii). However, we are only interested
in the ground mode, which is the most probable to appear be-
cause it is the easiest to excite.

Since the collisionless Landau damping of ~1 Hz kinetic
Alfvén waves in active regions is much weaker than the colli-
sional one (Voitenko & Goossens 2000), we investigated several
collisional dissipation mechanisms for the small-scale torsional
Alfvén waves. We found that the waves are damped mainly by
Joule heating via resistive dissipation of the field-aligned wave
current. The ion viscous dissipation is almost an order of mag-
nitude smaller. The localised heat input, given by the heating
function in r, is shown in Fig. 4.

The torsional Alfvén waves propagating in small-scale struc-
tures are relevant for the coronal heating problem and can ex-
plain the existence and maintenance of interior structures of
the loops, locally in places where the density was initially in-
creased. The waves propagate in density threads, damp and
heat the plasma. The heat propagates downwards to the photo-
sphere, causing plasma evaporation and sustaining the enhanced
density in threads. The positive feedback loop response to the
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Fig. 5. Sketch of the physical mechanism responsible for the mainte-
nance of density threads.

process (maintenance of density threads) is indicated in Fig. 5.
Through this process the structuring of the loop can maintain it-
self in time, drawing the energy from the photospheric and/or
chromospheric sources. What are the factors limiting the den-
sity increase, besides the limiting power of the driver excitation
Alfvén waves? With increasing density, several processes switch
on, which decrease and spread out the localised density enhance-
ments. The most important are plasma diffusion across the mag-
netic field, away from the threads, and enhanced plasma emis-
sion. These processes eventually lead to saturation of the density
increase.

In a recent paper, Aschwanden et al. (2007) suggest (and
give ten reasons for their statement) that the heating mainly
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occurs in the transition region/upper chromosphere, from where
the plasma evaporates in the corona. The heating mechanism we
proposed (by torsional Alfvén waves) does not contradict this
suggestion because the wave damping is increased in the places
where plasma is more collisional, in the transition region/upper
chromosphere. However, more precise calculations should be
done taking into account the plasma inhomogeneity along the
background magnetic field. If the plasma inhomogeneity along
the thread is taken into account, the wave damping and plasma
heating should be localised at the footpoints, where the resistiv-
ity is larger. In this case, the stages (2) and (3) of Fig. 5 have to
be supplemented/replaced with the stage of enhanced heating at
the footpoints, in agreement with Aschwanden et al. (2007).

Alternative kinetic excitation mechanisms, similar to that
studied by Voitenko & Goossens (2003), can also be efficient for
kinetic Alfvén eigenmodes in coronal structures and could pro-
vide wave sources in the coronal loops. This problem is under
consideration.

Appendix

To obtain Eq. (13) we proceed in the following way: the first step
is to eliminate the velocities and densities and obtain two equa-
tions in vector potential, A,, and scalar potential, ¢; the second
step is to eliminate ¢ in order to obtain an equation only in A,.

The first equation in A, and ¢ is obtained by expressing v; and
v. from the motion equations and replacing them in the condition
for solenoidal currents. We describe the details below.

From the perpendicular component of the ion motion Eq. (1),
after writing E as a function of scalar and vector potentials (9),
and using p; = nT;, we can express v. as:

P2 O e
o T Ye) T T M oor ~ M dior

1)

Because 1° < v', we take v° = 0. In the parallel direction the
ions do not move, so viZ = 0, but the much lighter electrons move
and their velocity can be calculated from the parallel component
of Ampere’s law (7):

c
U; = ALAZ'
drnpe

(22)

The plasma is electrically neutral, i.e. n; = ne, and we denote the
perturbed number density for both species by n. We express n
from the continuity equation for the electrons as:

on _ ov;

or -

By replacing (21) and (22) in the equation V - j = 0 and using
also Eq. (23), we obtain:
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or

The second equation in ¢ and A, is derived by writing the paral-
lel component of the electron continuity equation, in which we
neglect the inertial term, but keep the pressure term:

on 09 10A,
__ron 9 10 2
0 6z+noe(8z+c at) 25
Using also Egs. (22) and (23), we get:
0? T, 9 0%
—+t—— A ——— = 0. 26
(6[2 " 4nnpe? dz2 AL) SRR (26)

Combining Egs. (24) and (26) and neglecting the cyclotron ef-
fects, we obtain Eq. (13).
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