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Abstract. The propagation of slow magnetoacoustic waves along a multithreaded coronal loop is modelled analytically by
means of a ray tracing method. It is shown how cross field gradients build up due to phase mixing. The cross field gradients can
enhance shear viscosity so that it dominates over compressive viscosity. Nevertheless the short dissipation distances (~107 m)
observed for slow waves in coronal loops require very small cross field length scales which imply a filamentary structure on
scales at least three orders of magnitude below the current detection limit of TRACE and close to the limit where magnetohy-
drodynamic (MHD) theory breaks down. The observed dissipation distances can alternatively be explained by phase mixing in
its ideal regime, where the apparent damping is due to the spatial integration of the phase mixed amplitudes by the observation.
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1. Introduction

Slow magnetoacoustic waves, are observed propagating up-
ward along coronal loops by SOHO/CDS and TRACE (e.g.
De Moortel et al. 2004; Marsh et al. 2003, and references
therein). The short damping distances of these waves, Ly S
107 m, have not yet been explained adequately in terms of
known mechanisms. In this Letter we want to address the in-
terpretation of the observed damping in terms of phase mixing
of slow waves. The process of phase mixing was first studied
in the coronal environment for Alfvén waves by Heyvaerts &
Priest (1983). The basic idea is that sufficiently short dissipa-
tive length-scales can be created in the cross-field direction due
to the fact that the perturbations travel at different phase speeds
along neighboring field lines. Since slow waves, like Alfvén
waves, are very anisotropic and propagate mainly along the
magnetic field lines, the consideration of a phase mixing pro-
cess for slow waves is an obvious step. However, the phase
mixing of slow mode waves has only recently been studied by
De Moortel et al. (2004), in a plasma with a smooth density
profile.

This Letter focusses on the following three points.

Firstly, there is increasing evidence that coronal loops have
complex internal structure and consist of many thin strands
(Aschwanden et al. 2000; Testa et al. 2002). Robbrecht et al.
(2001) noted that the waves seem to propagate at different
speeds when observed in different temperatures and have re-
lated that finding to a possible subresolution internal structure
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of the loops. This implies that the description of a phase mixing
process should be considered on a subresolution scale.

Secondly, the use of isotropic viscous damping (as used in
previous studies) can by no means be justified in the corona,
where Qp7), = 10* =+ 10° (€2p is the proton cyclotron frequency,
7p is the proton collision time). In this Letter we therefore
start from the Braginskii coefficients (Braginskii 1965) and the
proper values for shear and compressional viscosity.

Thirdly, we point out that it may be sufficient to consider
the phase mixing process in its ideal regime, as the waves are
always observed in a integrated sense (due to limited spatial
resolution and line of sight integration). The weakening of the
signal is then only apparent, just being due to the fact that the
signals on different field lines are out of phase and cancel out by
spatial integration during the observation. A similar suggestion
of apparent damping has been made recently by Klimchuk et al.
(2004), but they attribute the damping to a broadening of the
wave front, while we rather attribute it to the annihilation of
the phase mixed amplitudes through integration.

2. Damping due to phase mixing and anisotropic
viscosity

The aim is to track the evolution of slow waves, excited at
the footpoints of the magnetic field lines. The length scale of
the transverse inhomogeneity of the equilibrium is L, and the
length scale of the field-aligned inhomogeneity of the equilib-
riumis L. Both L, and L; can vary over a wide range in the so-
lar corona, but usually L; > L, . Here we consider a perturba-
tion with parallel and perpendicular wavelengths A, 4, which
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are much shorter than the length-scales of the equilibrium in-
homogeneity, 4) <« Lj, 4, < L, . The following analysis thus
in principle describes only the developed phase of phase mix-
ing. The initial stages of the phase mixing process where cross-
field gradients evolve from an initially smooth perpendicular
profile are not described here. In that respect the values for
the damping lengths calculated below should be considered as
lower limits. The numerical results by De Moortel et al. (2004)
suggest that also the initial evolution is indeed accurately de-
scribed by the propagation of local slow waves confined to the
field lines and their coupling to other modes is weak in compar-
ison to their observed damping. On the other hand, numerical
simulations by Malara et al. (1996) have demonstrated that the
oblique propagating Alfvén wave can be efficiently coupled to
compressional modes when 4, ~ 4. However, in their simu-
lations Malara et al. imposed periodicity along the direction of
background magnetic field, which is quite different from those
used in our model and in the simulations by De Moortel et al.
(2004).

Given the above assumptions! and by use of a local co-
ordinate system with z along the equilibrium magnetic field
and x along the equilibrium cross-field gradient, the coupled
viscous MHD equations for the field-aligned (v;) and cross-
field (v,) components of the velocity perturbation are obtained
by use of Braginskii’s (Braginskii 1965) equations as:
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with Vs and V, the sound and Alfvén speed as usual. These
equations differ from those used by De Moortel et al. (2004)
only by the dissipative terms. Here the specific viscosity
coefficients correspond to the Braginskii coefficients: vy =
0.961,kg Ty /mp; vo = (Qp‘rp) 2vo;v1 = /4 where py = nomy,
is the mass density and 7, the proton collision time.

Since we are assuming 4y <« Ljand 1, <« L, we can
consider the evolution of the perturbation by means of a ray
tracing method using the WKB-ansatz:

A=A0xexp(—zwt+sz-dr+fydt).

The wave vector k and the increment y have to be calculated
from the local dispersion relation, and the integration is along
the path of the wave propagation which is determined by the
ray equations for the wave vector k and position r:
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! The assumption A, < L, is not entirely necessary at this point
but we will have to adopt it at a later stage anyway.
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The effects of the plasma inhomogeneity on the waves are due
to the spatial dependence of the plasma parameters along the
path of the wave propagation. The local dispersion relation is
obtained from Egs. (1)—(2) by substituting 8/0t — —1w + 7,
0/0x — 1k, 0/0z — 1k,. When the damping rate is small
the slow wave frequency can be obtained as an expansion in
B=ViVi:

W’ = (1-B+0@") V2. )
According to Eq. (4) slow waves propagate almost purely along
the magnetic field in a low 8 plasma. Equation (4) furthermore
yields:
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where the integration is performed under the assumption
that z < L which is true for the observed waves. Although
the inhomogeneity along the magnetic field lines may slowly
change the parallel length scales of the perturbation, & cannot
change significantly for the observed travelling distances z <
Ly, and can thus be assumed constant over the observed trav-
elling distance. Perpendicular length scales on the contrary de-
crease rather quickly since z > L, when the filamentary struc-
ture is taken into account. After a rather short initial stage ko
can be ignored and the perpendicular length scales keep on de-
creasing very fast as k, ~ ky (z/Ly).

The damping rate can furthermore be computed to be:
y= —% (gvokg + vzki) = —%vo (gkg + (Qprp)—zki).
The first term in this expression is due to compressional vis-
cosity while the second is due to shear viscosity. As we have
argued, the cross-field gradients quickly dominate and thus
the shear viscosity starts dominating after a distance z/L, >
2/ \/§Qp‘rp ~ 2 x 10*. For the decrease of the wave amplitude
along the ray path we obtain:

3
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where z._, and z;_, are the typical dissipation distance due to
compressional viscosity and to shear viscosity respectively:

(6)

As we see, the Heyvaerts-Priest-like decay of the Alfvén wave
amplitude with height, exp (—2°), is also obtained for dissi-
pation of slow magneto-acoustic waves by shear viscosity.
Moreover, the damping distance by shear viscosity, contrary
to that for compressive viscosity, depends on the cross field
length scales and could thus be brought down considerably by
accounting for the observed filamentary structure.

Typical values for the phase speed and period are 1.2 X
10° m/s and 300 s (e.g. De Moortel et al. 2002). With these
numbers the slow wave dispersion relation yields a parallel
wave length of around 3.6 x 107 m. It must be noted that this is
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longer than the typical observation length of 8.9 + 4.4 x 10° m.
This is indeed in accordance with the fact that hardly half of a
wavelength seems to be visible in the running difference im-
ages (see e.g. the running difference image in Marsh et al.
2003). With a value of vo = 1.4 x 10° m?/s those numbers
yield a compressional damping length of z._, ~ 4.2 x 10° m,
which is clearly more than two orders of magnitude too large to
explain the observed damping lengths of ~107 m. If phase mix-
ing is expected to enhance the cross field gradients sufficiently
fast so that shear viscous damping becomes more effective than
the compressional damping (which we just found inefficient),

-1

then we at least need L, < % (QPTP) Ze—y =~ 1.2 km, where

we have used Q, = 10° s7! and 7, = 0.17 s. More precisely,
the explanation of the observed damping lengths of the order
of ~107 m requires cross field equilibrium length scales shorter
than:

1 V()k§Z3b
L < o\~ 14m.
LS00 o "

If the density contrast of the threads is of the order of 2,
then this also represents the required dimension of the strands.
For larger density contrasts between threads, the widths of the
threads may well be up to 100 m. While this is at least three or-
ders of magnitude below the current detection limit of TRACE,
it is only one order of magnitude below the finest filamentary
scales found by Woo & Habbal (1997). The value of 14 m
is still longer than the proton (and electron) Larmour radius,
pp = 0.5m, butitis only one order of magnitude larger the crit-
ical length scale of one meter at which the non-uniformity still
can be sustained. Therefore, even if such small length scales
are present in the coronal loops we suggest it is unlikely that
the observed damping lengths can be explained with a com-
bined mechanism of phase mixing and shear viscous damping
in the context of magnetohydrodynamics.

3. Apparent damping

The point we address here is whether the observed disappear-
ance of propagating waves has anything to do with real dissi-
pation or rather is just apparent. Therefore, let us calculate the
observed signal of phase-mixed slow waves in the ideal regime.
It can be anticipated that when waves within one pixel get out
of phase, the integrated signal is weakened.

The linear part of the excess emission measure at a partic-
ular pixel (of size Lp) due to the linear density perturbations n;
on the equilibrium density ny is:

EM; = EM — EM, = L;' f G2non dx
Ly

where G indicates the temperature filter of the device so that
only emission from plasma at filter sensitive temperatures is
picked up. In order to keep the mathematical analysis as sim-
ple as possible we use a highly simplified response function,
namely a hat function picking up only signals from plasma at
temperatures between (1 — w/2)Ty and (1 + w/2)Ty, where w
is thus a measure of the filter width. Due to the temperature in-
homogeneity T(x)/To = 1 + x/L,, signals are picked up from
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Fig. 1. The normalized linear part of the excess emission measure in-
tegrated over one pixel a) as a function of longitudinal distance z and
time ¢ normalized with respect to the central longitudinal wavelength
and the period respectively. b) as a function of the longitudinal dis-
tance z for time ¢ = 0. The dashed line is the analytic approximation
to the integral.

strands with a width of Lg = wL, . Now let us assume that these
strands are below pixel resolution Lg < Lp then:

Lg

1 2
EM1 = 2fn()L—G j:§ nldx

where f = N X Lg/Lp is the filling factor with N the number
of strands in the pixel. We consider n; as the signal of phase
mixed slow waves travelling with different phase speeds and
thus different parallel wave lengths on different field lines:
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‘We thus obtain:
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The line-of-sight integration gives the same result provided
there are several strands along the line of sight. If w < 1,

1/4/1 + y can be expanded and the integral worked out to be:

EM, = an()nlom sin [ﬂ] cos [Zﬂ'i - 27r£] .

TZw 2/1”0 /l||0 T
In reality, however, w is not small but of order unity for the
TRACE A171 bandpass (see Bentley et al. 2000) and thus in-
tegral (7) needs to be calculated numerically. Figure 1a shows
the result for w = 1 as a function of z and # where distances and
time are normalized with respect to 4y and 7. Figure 1b shows
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Fig. 2. The rate of weakening of the signal as a function of the filter
width w. The dashed line is obtained with the analytic approximation
and is thus only valid for small w.

only the z dependence and the dashed line corresponds to the
analytic result which appears to behave well up to about one
wavelength (despite the violation of condition w <« 1). As can
be seen, the amplitude of the signal decreases almost by half
of its value in about one wavelength. Clearly a narrower filter
would result in less weakening of the signal while a broader
filter yields faster weakening of the signal. Therefore, Fig. 2
shows the strength of the signal after one wavelength as a func-
tion of w. Clearly, we should conclude that substantial weak-
ening of the signal can occur in one wavelength if the width of
the filter is of order unity or higher.

The above results are obtained using only the perpendicu-
lar variation of temperature (phase speed) and a simplified fil-
ter function. While more realistic calculations might change
these results slightly, we believe that the present calculations
show the basic ingredients of the process and have identified
the width of the temperature filter as a crucial parameter in the
problem.

4. Conclusions and discussion

We have solved the MHD equations analytically by means of a
ray tracing method and have thereby shown that phase mixing
of slow waves may reduce the damping length by shear vis-
cosity below the damping length by compressional viscosity.
However, to explain the very small damping lengths for the
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observed slow waves in coronal loops, extremely small equi-
librium cross field length scales are required which are at least
4 orders of magnitude below the current detection limit. Those
length scales are also close to the length scales at which the
MHD approximation breaks down. It thus seems unlikely that
such a process is responsible for the fast damping of the ob-
served slow waves in coronal loops unless the anomalous vis-
cosity comes into play.

However, phase mixing need not be ruled out with respect
to the fast damping of slow waves in coronal loops. Even in
the ideal phase the spatially integrated signal weakens as the
waves get out of phase. Our calculations show that the condi-
tions for this apparent damping to be substantial is quite mild.
The width of the temperature filter has to be of the order of the
peak temperature and that temperature range has to be present
on a sub-resolution scale (or, alternatively, within the line-of-
sight integration distance).
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