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ABSTRACT

Existing codes for directly solving for the distribution function in laser-plasma interaction studies either assume a collisionless plasma or solve for the full Fokker-Planck collision terms. While much progress has been made
in efficiently implementing the Fokker-Planck collision terms, these methods remain computationally demanding and often rely on decomposing the electron distribution function into spherical harmonics. In the laser-plasma
interaction region it is desirable to use an Eulerian grid for its ability to accurately include a laser. Here we outline a Krook type collision operator and assess its accuracy by comparing it to known transport coefficients in
regimes relevant to laser-produced plasmas. Following the work done by Mannheimer et. al.[1] we normalise the Krook operator to give the same thermal flux as Braginskii in the local limit and investigate its effectiveness in
a full Vlasov simulation.

Introduction

Considerable progress[1][2] has been made studying transport phenomena using Vlasov-Fokker-Planck mod-
els based on the decomposition of the distribution function into spherical harmonics. However for numerical
simulation of the laser-plasma interaction region it is desirable to solve Vlasov’s equation directly on an Eu-
lerian grid. A direct solve of the Vlasov equation is a problem that requires significant computational effort.
While Eulerian based Vlasov-Fokker-Plank models have been developed[6], these methods incur significant
computational cost.

Collisions are included in a relativistic Vlasov model through:
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Where the term on the right hand side denotes the change in the distribution function due to collisions.

Krook Collisions

The Krook-type[5] collision operator assumes that collisions act to relax the distribution function to a
Maxwellian at the collisional rate. Electron-electron, electron-ion and ion-ion collisions are implemented here.
The Krook collision term for each of the distribution functions is then:
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= −νee(v)(fe − fm1)− νei(v)(fe − fm2)

Velocity Dependent Collision Frequencies

Velocity dependent collision frequencies are vital for studying hot distribution functions where the collision
time of the faster particles could be orders of magnitude longer than that of the slow particles. For ease of
computation we take the slow and fast limit collision frequencies from the NRL for a test particle α colliding
with a field particle β.
The fast and slow limits are defined when:
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Then following Mannheimer et al[3], make an analytic connection between the two:

ν =
νslow

1 + νslow
νfast
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Collision Frequencies for 1keV Hydrogen plasma at a density of 1 × 1029m−3
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Collision Frequencies for 1keV Z=6 carbon plasma at a density of 1 × 1029m−3
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Implementation

For the Krook operator to conserve mass, momentum and energy, the advance from time n to n + 1 must
satisfy:

∫

(fn+1 − fn)vidv = 0 v = 0, 1, 2

This can be enforced numerically with a velocity dependent collision frequency if a Maxwellian fm is chosen
such that

∫

ν(v)(fn − fm)vidv = 0 v = 0, 1, 2

• Solve for parameters of Maxwellian using Newton-Rapheson, use moments of fn as initial guesses

• Implicit time advance so for the electron update:

fn+1e − fne =
−∆tνee

1 + ∆t(νee + νei)
(fne − Fm1) +

−∆tνei
1 + ∆t(νee + νei)

(fne − Fm2)

• Collision term non-relativistic as the collision time for fast particles is longer than timescales of interest

• Can be modified to a faster method, where mass is conserved numerically but energy and momentum chosen
from f using Greene’s[6] analytical solutions.

Spitzer Electrical Conductivity

To assess the accuracy of the Krook operator an electric field is applied across a 1d block of plasma. The
resulting current(Dashed) is then plotted as a function of time. This is compared against the value obtained
using the resistivity based on Spitzer(Solid)[4].
Applied fields of E = 1× 108V/m E = 2× 108V/m E = 5× 108V/m E = 1× 109V/m E = 2× 109V/m.
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Fokker-Planck Heat Flux Normalisation

In the local limit Mannheimer et al[3]. found that the heat flux calculated using a Krook operator differed
from that produced using the full Fokker-Planck collision term by a factor ζ(z).
Rather than normalise the entire collision operator with this factor we instead normalise our slow limit electron-
electron collision frequency using this factor to improve thermal transport performance whilst retaining the
accuracy of the electrical transport.
The electron-electron collision frequency becomes

νee =
ζ(z)νslow

1 +
ζ(z)νslow
νfast

Heat Flow in the Local Limit

The initial temperature profile is shown(left) with thot = 10eV and tcold = 9eV . The results here are for a
fully ionised hydrogen plasma. The ions are mobile and are treated with the quick Krook operator while the
conservative operator is used on the electrons.
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Snapshots were taken after 1400 plasma periods.

Non-Local Transport

The steep temperature gradients produced in laser-plasma interactions moves heat flow into the non-local
regime. The mean free paths of the electrons in the hot distribution are often orders of magnitude larger
than the typical temperature scale length. In shock ignition scenarios these electrons can heat plasma ahead
of the incoming shockwave, decreasing the efficiency of the compression.
The tests here are identical to those in the local limit, however the temperature gradient is now much steeper,
from thot = 400eV to tcold = 100eV
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The calculated heat flux exceeds Braginskii in the cool region due to contribution from hot electrons from
the hotter region.
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