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Propagating intensity perturbations...

SoHO/EIT 21/04/2001

TRACE 21/04/2001

TRACE 14/07/1998

Since SoHO we see intensity perturbations 
propagating along large coronal structures 
[Ofman 1997, De Forest & Gurman 1998, Berghmans & Clette 1999].
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...are slow magnetoacoustic waves

SoHO/EIT 21/04/2001

These perturbations have been interpreted as slow magnetoacoustic 
waves propagating along plume/loop structures. 
[De Moortel et al. 2000, Nakariakov et al. 2000, Robbrecht et al. 2001, ..., ...].

Characteristics:

- Projected propagation ≤ sound speed (tube speed) of structure
Multi-bandpass observations [Robbrecht et al. 2001; King et al. 2003]

STEREO showed that Vph = Cs [Marsh et al. 2009]

- Periods of 3,5, 10, ... minutes
- Long duration of quasi-periodic behaviour
- Damped over a short distance (thermal conduction)
- In phase intensity and velocity perturbations [Wang et al. 2009]



Example: this week’s SDO
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But are we all wrong? They are flows!
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SoHO/EIT 15/09/2001

Recently a new ‘school of thought’ has appeared that claim that the 
intensity perturbations are signatures of high-speed flows(~100 km/s), based 
on measurements of periodic spectral line asymmetries.
[Schrijver et al. 1999, Sakao et al. 2007, hara et al. 2008, De Pontieu et al. 2009, McIntosh et al. 2010].



Their arguments

- Many of the observed propagating disturbances (especially in coronal 
loops emanating from quiet Sun network and active region plage) do not 
show evidence of significant quasi-periodic signals.

- The wave interpretation was compatible with the lack of strong Doppler 
shifts. 

- EIS measurements of intensity and velocity oscillations are accompanied 
by oscillations in the line width and recurring asymmetries in line profiles 
across a range of temperatures. 

However, a periodic flow model does not yet exist. The whole alternative is 
a superposition of a periodic upflow component in the blue wing on top 
of a static background



Can slow waves explain spectral features?

Why throw away 10 years of slow wave work? Can we possibly explain 
periodic line-asymmetries and large line-width variations with slow waves?

We model the spectral line in the presence of a simple slow wave:
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(XRT) on board Hinode have revealed signatures of quasi-
periodic propagating intensity perturbations at the edge of ac-
tive regions (temperature around 1.1 MK), travelling at speeds
of 140 km s−1, and which arguably were interpreted by Sakao
et al. (2007) in terms of continuous flows (see also He et al.
2010). Also, a correlation between Doppler shifts and line
broadenings as well as significant deviations in the blue wing
of line profiles have been found in EIS observations by Hara
et al. (2008). Moreover, EIS observations of asymmetries in
line profiles, with faint blue-wing excess in order of 1-5% core
intensity, were used to support the alternative suggestion that
the quasi-periodic propagating intensity perturbations could
be explained as periodic high-speed (50-100 km s−1) upflows
instead of slow waves (De Pontieu et al. 2009; McIntosh &
De Pontieu 2009; McIntosh et al. 2010).
Waves and flows are in general of course not mutually ex-

clusive phenomena. Persistent Doppler blue and red shifts
have been observed, using EIS, in active region loops, and in-
terpreted as up and down flows with speeds of the order of
20-50 km s−1 (e.g. Doschek et al. 2008; Del Zanna 2008),
more modest than the above reported speeds. Downflows are
stronger in cooler structures whilst upflows are found in faint,
1.2-1.4 MK hot, long loops.
The study of the spectral signature of slow waves in the

solar atmosphere has a long history (e.g. Eriksen & Maltby
1967; McWhirter & Wilson 1974; Byerley et al. 1978; Mc-
Clements et al. 1991; Hansteen 1993; Brynildsen et al. 2003).
Here, we address the specific question whether the new obser-
vational spectral signatures seen in events of quasi-periodic
intensity perturbations are consistent with a slow wave inter-
pretation. A correct interpretation is of consequence for our
understanding of energy transport, dissipation and wind ac-
celeration in these structures as well as for the seismologi-
cal exploitation using slow waves (e.g. Robbrecht et al. 2001;
King et al. 2003; Wang et al. 2009).

2. SLOWWAVE MODEL
A slow magnetoacoustic wave in a coronal structure of low

plasma-β is guided to propagate along the structure parallel to
the magnetic field. Hence, the wave is almost completely lon-
gitudinal and one-dimensional. For simplicity, we model the
slow wave as a one-dimensional, small amplitude plane sound
wave propagating upwards in a static equilibrium plasma that
is uniform along the magnetic field. Such a wave is described
by the solution (Landau & Lifshitz 1987)

v′ = a cs cos(x − cst) ,
1

(γ − 1)
T ′

T0
=

n′

n0
=
v′

cs
, (1)

where n′(x, t), T ′(x, t) and v′(x, t) are the wave perturbations
in number density, temperature and velocity, respectively. The
quantities with subscript ’0’ indicate the equivalent constant
equilibrium quantities. Also, γ is the ratio of specific heats, cs
is the equilibrium sound speed and a is the relative wave am-
plitude, which is assumed to be small, i.e. a # 1. The wave
has a phase φ=kx-ωt, wavenumber k and frequency ω=csk.
Effects of gravitational stratification, dissipation (e.g. thermal
conduction) and variations in loop cross section will cause the
amplitude a to be a function of height with increasing ampli-
tude due to stratification and decreasing amplitude due to dis-
sipation and cross section divergence. These phenomena has
been studied in the regimes of wavelengths shorter or simi-
lar to the typical longitudinal length-scales (Nakariakov et al.
2000; Verwichte et al. 2001; De Moortel & Hood 2004).

3. EMISSION LINE MODIFIED BY A SLOWWAVE
The emission of a coronal resonant spectral line from a

coronal volume element is modelled as

ε(λ) ∼ n2 exp
[

−
(λ − λc)2

2(∆λ)2

]

. (2)

The observed intensity is the total emission along the line-of-
sight, i.e. I(λ)=

∫

ε(λ, x)dx. The quantities λc and ∆λ are the
line centre and width, respectively. For thermal line broaden-
ing, the width is of the form ∆λ = λcvth/c0 where c0 is the
speed of light and vth is the ion thermal speed. We shall il-
lustrate our findings throughout using an emission line from
an iron ion minority species at a temperature of 1 MK (vth =
12 km s−1, cs/vth = 12.5), which is convolved by the spectral
resolution of the EIS instrument. The intensity is furthermore
proportional to a function, which contains information about
ionisation and depends on temperature and (weakly) on den-
sity. We shall assume, for the sake of clarity in what follows,
that over the range of temperatures that the slow wave covers,
this function is constant (see e.g. De Moortel & Bradshaw
2008, for a study of the effect of ionisation on slow wave di-
agnostics).
The presence of the slow wave in the emitting plasma mod-

ifies the strength, centre and width of the emission line as a
function of space and time as

n(x, t)=n0
(

1 + n′

n0

)

, (3)

λc(x, t)=λ0
(

1 − v
′ cosα
c0

)

, (4)

∆λ(x, t)=∆λ0
(

1 + T
′

T0

)1/2

. (5)

The Doppler velocity shift involves the line-of-sight velocity
component v′ cosαwhere α is the angle between the direction
of propagation and the line-of-sight. Equations (3)-(5) de-
scribe the effects of intensity variations due to the wave den-
sity perturbation, Doppler shifts due to the wave velocity field
and thermal line broadening due to the wave temperature per-
turbation. Because the density and temperature perturbations
are in phase with the velocity for a propagating slow wave ,
the emission from the plasma is enhanced during the upwards
(blue-shift) propagating phase of the wave and is decreased
during the downwards (red-shift) propagating phase of the
wave. This inherently asymmetric behaviour is illustrated in
Figure 1. From Eq. (2) it can be seen that the emission line
will be a symmetric Gaussian profile at any given time from
a single plasma element in which a slow wave is present. In
order for the line to be asymmetric either the emission is aver-
aged over a period of oscillation or an additional quasi-static
plasma source is taken along the line-of-sight. The former
case is relevant for spectral raster scans where temporal reso-
lution is traded for spatial resolution, whilst the latter case is
relevant for spectral slit measurements.

3.1. Asymmetry of a time-averaged line
To understand how an average blue-red wing asymmetry

is produced by a slow wave, we expand the line profile (2)
relative to the equilibrium, using s = (λ−λ0)/∆λ0 and a# 1,
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is produced by a slow wave, we expand the line profile (2)
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wave perturbations

local spectral signatures

local line emission

Integrate over time Integrate over line-of-sight



Slow waves have inherent spectral asymmetry

Because velocity and density perturbations are in-phase, upwards 
propagating waves have a stronger blue wing than red wing!



Time-averaged spectral line

When we average over an oscillation period, the blue wing receives more 
emission than the red wing.

Periodic spectral line asymmetries from slow magnetoacoustic waves 3

to O(a2) accuracy:

ε(s, x, t)∼ n20
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and F(s)=exp(−s2/2). The equilibrium thermal speed is re-
lated to the equilibrium line width as vth,0/c0 = ∆λ0/λ0. Ex-
pansion (6) is similar to the Gaussian-Hermite expansion of
spectral lines (Van der Marel & Franx 1993), which can
be seen by identifying dmF(s)/dsm = (−1)mF(s)Hm(s) where
Hm(s) is the Hermite polynomial of order m (Abramowitz &
Stegun 1965).
Since the perturbations are all proportional to a cosφ, when

averaged over an oscillation period, only the equilibrium and
quadratic perturbation terms have non-zero contributions. We
denote time-averaged quantities by a bar. The average inten-
sity Ī(s) = (ω/2π)

∫ 2π/ω
0 I(s, t)dtmay be written with the aver-

age emission ε(s) as the sum of a Gaussian profile F(s∗) and
third and fourth order derivatives of a Gaussian:

ε̄(s) ≈ n20
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2
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, f̄4 =

3a2

2
(γ − 1)2 . (9)

The argument of the Gaussian profile is defined as

s∗ =
s + f̄1
√

1 + f̄2
=

svth,0 − vD
√

v2th,0 + (∆vNT)2
. (10)

The line deformations imposed by the slow wave cause,
firstly, a Doppler shift in the line by vD=− f̄1vth,0 to the blue
wing, secondly a non-thermal line broadening ∆vNT= f̄ 1/22 vth,0
and, thirdly, an asymmetry through the term involving the
third derivative of F. Using Eq. (9) it can be seen that for

a heavy ion with cs & vth,0 , the non-thermal line broaden-
ing is approximately equal to ∆vNT ≈ acs cosα/

√
2. There-

fore, mainly through its velocity perturbation, the slow wave
produces a line broadening that is proportional to the wave
amplitude. The Doppler velocity and line broadening are
strongly correlated. For instance, a Doppler velocity of 5 km
s−1 has an associated non-thermal line width of approximately
20 km s−1, consistent with observations reported by Hara et al.
(2008). Furthemore, for an iron emission line, using Eq. (9),
f̄3 ≈10a2. Therefore, a slow wave with a relative amplitude
of 5% is likely to produce an average line asymmetry of the
order of a few percent. Figure 2 shows the Doppler shift, line
broadening and line asymmetry as a function of a using Eqs.
(2)-(5). Figure 2 shows that vD and ∆vNT follow the analytical
approximations in the range of observed amplitudes.
The line asymmetry is characterised using quantities B and

R, which are the integrated intensity between 1 and 3 line
widths from the line centre in the red and blue wings of the
line, respectively. Hence, (R − B)/(R + B) gives a measure
of the asymmetry in the wings of the line profile with nega-
tive values representing an excess in the blue wing (De Pon-
tieu et al. 2009). An alternative measure of line asymmetry
is skewness, defined as

∫

((s − s0)/σ)3I(s)ds/
∫

I(s)ds where
s0 and σ are the mean and standard deviation of the line. It
is consistent with the R-B measure in showing a bias towards
the blue wing for small amplitudes and red wing bias for large
amplitudes where the average line forms a heavier red wing.
Figure 2 shows that both measures show similarly a growing
blue-wing bias as a function of wave amplitude.

3.2. Asymmetry of a multi-component line
First, we consider the profile of an emission line which con-

stitutes emission from two plasma components in the line-of-
sight, (1) a quasi-static ‘background’ and (2) the plasma struc-
ture supporting a propagating slow wave. The ‘background’
plasma refers here to another plasma in the same line-of-sight
distinct from the ‘background equilibrium’ plasma structure
through which the slow wave is propagating. This is mod-
elled for small amplitudes using Eq. (6) by replacing the term
of O(1) in f0 by 1 + Ibg/I0, where Ibg is the background and
I0 is the structure’s equilibrium plasma emission. Figure 1 il-
lustrates that for two oscillation phases, φ=0, π, the effect of
the slow wave on the combined line is variations in intensity,
Doppler shift, line width and line asymmetry, the strength of
which depends on Ibg/I0. The intensity and Doppler velocity
variations are reduced by a factor 1/(1 + Ibg/I0). Therefore,
even though the slow wave may have a large amplitude, the
resulting intensity and Doppler velocity may be small. Again,
the contributions of order O(a2) in Eq. (6) introduce stronger
emission in the blue wing. Figure 3 shows an example of the
simulated spectral line signatures from a single Gaussian fit
to the line as a function of time for a slow wave with a pe-
riod of 5 minutes and a=0.15, and a static plasma component
with Ibg=2I0. Oscillations of reduced amplitude are seen in
the intensity and Doppler velocity. Also, the line width has
the tendency to show a half-period oscillation with an ampli-
tude of approximately 1 km s−1 and is caused by an excursion
of the wave contributed line towards both blue and red wing
of the static line. The spectral signatures are consistent with
recent observations by De Pontieu &McIntosh (2010), except
for the half-period oscillation in the line-width. However, the
addition of a modest steady upflow as reported could diminish
the excursions into the red wing of the static line and cause the
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and F(s)=exp(−s2/2). The equilibrium thermal speed is re-
lated to the equilibrium line width as vth,0/c0 = ∆λ0/λ0. Ex-
pansion (6) is similar to the Gaussian-Hermite expansion of
spectral lines (Van der Marel & Franx 1993), which can
be seen by identifying dmF(s)/dsm = (−1)mF(s)Hm(s) where
Hm(s) is the Hermite polynomial of order m (Abramowitz &
Stegun 1965).
Since the perturbations are all proportional to a cosφ, when

averaged over an oscillation period, only the equilibrium and
quadratic perturbation terms have non-zero contributions. We
denote time-averaged quantities by a bar. The average inten-
sity Ī(s) = (ω/2π)

∫ 2π/ω
0 I(s, t)dtmay be written with the aver-

age emission ε(s) as the sum of a Gaussian profile F(s∗) and
third and fourth order derivatives of a Gaussian:
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The argument of the Gaussian profile is defined as

s∗ =
s + f̄1
√

1 + f̄2
=
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. (10)

The line deformations imposed by the slow wave cause,
firstly, a Doppler shift in the line by vD=− f̄1vth,0 to the blue
wing, secondly a non-thermal line broadening ∆vNT= f̄ 1/22 vth,0
and, thirdly, an asymmetry through the term involving the
third derivative of F. Using Eq. (9) it can be seen that for

a heavy ion with cs & vth,0 , the non-thermal line broaden-
ing is approximately equal to ∆vNT ≈ acs cosα/

√
2. There-

fore, mainly through its velocity perturbation, the slow wave
produces a line broadening that is proportional to the wave
amplitude. The Doppler velocity and line broadening are
strongly correlated. For instance, a Doppler velocity of 5 km
s−1 has an associated non-thermal line width of approximately
20 km s−1, consistent with observations reported by Hara et al.
(2008). Furthemore, for an iron emission line, using Eq. (9),
f̄3 ≈10a2. Therefore, a slow wave with a relative amplitude
of 5% is likely to produce an average line asymmetry of the
order of a few percent. Figure 2 shows the Doppler shift, line
broadening and line asymmetry as a function of a using Eqs.
(2)-(5). Figure 2 shows that vD and ∆vNT follow the analytical
approximations in the range of observed amplitudes.
The line asymmetry is characterised using quantities B and

R, which are the integrated intensity between 1 and 3 line
widths from the line centre in the red and blue wings of the
line, respectively. Hence, (R − B)/(R + B) gives a measure
of the asymmetry in the wings of the line profile with nega-
tive values representing an excess in the blue wing (De Pon-
tieu et al. 2009). An alternative measure of line asymmetry
is skewness, defined as

∫

((s − s0)/σ)3I(s)ds/
∫

I(s)ds where
s0 and σ are the mean and standard deviation of the line. It
is consistent with the R-B measure in showing a bias towards
the blue wing for small amplitudes and red wing bias for large
amplitudes where the average line forms a heavier red wing.
Figure 2 shows that both measures show similarly a growing
blue-wing bias as a function of wave amplitude.

3.2. Asymmetry of a multi-component line
First, we consider the profile of an emission line which con-

stitutes emission from two plasma components in the line-of-
sight, (1) a quasi-static ‘background’ and (2) the plasma struc-
ture supporting a propagating slow wave. The ‘background’
plasma refers here to another plasma in the same line-of-sight
distinct from the ‘background equilibrium’ plasma structure
through which the slow wave is propagating. This is mod-
elled for small amplitudes using Eq. (6) by replacing the term
of O(1) in f0 by 1 + Ibg/I0, where Ibg is the background and
I0 is the structure’s equilibrium plasma emission. Figure 1 il-
lustrates that for two oscillation phases, φ=0, π, the effect of
the slow wave on the combined line is variations in intensity,
Doppler shift, line width and line asymmetry, the strength of
which depends on Ibg/I0. The intensity and Doppler velocity
variations are reduced by a factor 1/(1 + Ibg/I0). Therefore,
even though the slow wave may have a large amplitude, the
resulting intensity and Doppler velocity may be small. Again,
the contributions of order O(a2) in Eq. (6) introduce stronger
emission in the blue wing. Figure 3 shows an example of the
simulated spectral line signatures from a single Gaussian fit
to the line as a function of time for a slow wave with a pe-
riod of 5 minutes and a=0.15, and a static plasma component
with Ibg=2I0. Oscillations of reduced amplitude are seen in
the intensity and Doppler velocity. Also, the line width has
the tendency to show a half-period oscillation with an ampli-
tude of approximately 1 km s−1 and is caused by an excursion
of the wave contributed line towards both blue and red wing
of the static line. The spectral signatures are consistent with
recent observations by De Pontieu &McIntosh (2010), except
for the half-period oscillation in the line-width. However, the
addition of a modest steady upflow as reported could diminish
the excursions into the red wing of the static line and cause the
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and F(s)=exp(−s2/2). The equilibrium thermal speed is re-
lated to the equilibrium line width as vth,0/c0 = ∆λ0/λ0. Ex-
pansion (6) is similar to the Gaussian-Hermite expansion of
spectral lines (Van der Marel & Franx 1993), which can
be seen by identifying dmF(s)/dsm = (−1)mF(s)Hm(s) where
Hm(s) is the Hermite polynomial of order m (Abramowitz &
Stegun 1965).
Since the perturbations are all proportional to a cosφ, when

averaged over an oscillation period, only the equilibrium and
quadratic perturbation terms have non-zero contributions. We
denote time-averaged quantities by a bar. The average inten-
sity Ī(s) = (ω/2π)

∫ 2π/ω
0 I(s, t)dtmay be written with the aver-

age emission ε(s) as the sum of a Gaussian profile F(s∗) and
third and fourth order derivatives of a Gaussian:
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The argument of the Gaussian profile is defined as

s∗ =
s + f̄1
√

1 + f̄2
=

svth,0 − vD
√

v2th,0 + (∆vNT)2
. (10)

The line deformations imposed by the slow wave cause,
firstly, a Doppler shift in the line by vD=− f̄1vth,0 to the blue
wing, secondly a non-thermal line broadening ∆vNT= f̄ 1/22 vth,0
and, thirdly, an asymmetry through the term involving the
third derivative of F. Using Eq. (9) it can be seen that for

a heavy ion with cs & vth,0 , the non-thermal line broaden-
ing is approximately equal to ∆vNT ≈ acs cosα/

√
2. There-

fore, mainly through its velocity perturbation, the slow wave
produces a line broadening that is proportional to the wave
amplitude. The Doppler velocity and line broadening are
strongly correlated. For instance, a Doppler velocity of 5 km
s−1 has an associated non-thermal line width of approximately
20 km s−1, consistent with observations reported by Hara et al.
(2008). Furthemore, for an iron emission line, using Eq. (9),
f̄3 ≈10a2. Therefore, a slow wave with a relative amplitude
of 5% is likely to produce an average line asymmetry of the
order of a few percent. Figure 2 shows the Doppler shift, line
broadening and line asymmetry as a function of a using Eqs.
(2)-(5). Figure 2 shows that vD and ∆vNT follow the analytical
approximations in the range of observed amplitudes.
The line asymmetry is characterised using quantities B and

R, which are the integrated intensity between 1 and 3 line
widths from the line centre in the red and blue wings of the
line, respectively. Hence, (R − B)/(R + B) gives a measure
of the asymmetry in the wings of the line profile with nega-
tive values representing an excess in the blue wing (De Pon-
tieu et al. 2009). An alternative measure of line asymmetry
is skewness, defined as

∫

((s − s0)/σ)3I(s)ds/
∫

I(s)ds where
s0 and σ are the mean and standard deviation of the line. It
is consistent with the R-B measure in showing a bias towards
the blue wing for small amplitudes and red wing bias for large
amplitudes where the average line forms a heavier red wing.
Figure 2 shows that both measures show similarly a growing
blue-wing bias as a function of wave amplitude.

3.2. Asymmetry of a multi-component line
First, we consider the profile of an emission line which con-

stitutes emission from two plasma components in the line-of-
sight, (1) a quasi-static ‘background’ and (2) the plasma struc-
ture supporting a propagating slow wave. The ‘background’
plasma refers here to another plasma in the same line-of-sight
distinct from the ‘background equilibrium’ plasma structure
through which the slow wave is propagating. This is mod-
elled for small amplitudes using Eq. (6) by replacing the term
of O(1) in f0 by 1 + Ibg/I0, where Ibg is the background and
I0 is the structure’s equilibrium plasma emission. Figure 1 il-
lustrates that for two oscillation phases, φ=0, π, the effect of
the slow wave on the combined line is variations in intensity,
Doppler shift, line width and line asymmetry, the strength of
which depends on Ibg/I0. The intensity and Doppler velocity
variations are reduced by a factor 1/(1 + Ibg/I0). Therefore,
even though the slow wave may have a large amplitude, the
resulting intensity and Doppler velocity may be small. Again,
the contributions of order O(a2) in Eq. (6) introduce stronger
emission in the blue wing. Figure 3 shows an example of the
simulated spectral line signatures from a single Gaussian fit
to the line as a function of time for a slow wave with a pe-
riod of 5 minutes and a=0.15, and a static plasma component
with Ibg=2I0. Oscillations of reduced amplitude are seen in
the intensity and Doppler velocity. Also, the line width has
the tendency to show a half-period oscillation with an ampli-
tude of approximately 1 km s−1 and is caused by an excursion
of the wave contributed line towards both blue and red wing
of the static line. The spectral signatures are consistent with
recent observations by De Pontieu &McIntosh (2010), except
for the half-period oscillation in the line-width. However, the
addition of a modest steady upflow as reported could diminish
the excursions into the red wing of the static line and cause the
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and F(s)=exp(−s2/2). The equilibrium thermal speed is re-
lated to the equilibrium line width as vth,0/c0 = ∆λ0/λ0. Ex-
pansion (6) is similar to the Gaussian-Hermite expansion of
spectral lines (Van der Marel & Franx 1993), which can
be seen by identifying dmF(s)/dsm = (−1)mF(s)Hm(s) where
Hm(s) is the Hermite polynomial of order m (Abramowitz &
Stegun 1965).
Since the perturbations are all proportional to a cosφ, when

averaged over an oscillation period, only the equilibrium and
quadratic perturbation terms have non-zero contributions. We
denote time-averaged quantities by a bar. The average inten-
sity Ī(s) = (ω/2π)

∫ 2π/ω
0 I(s, t)dtmay be written with the aver-

age emission ε(s) as the sum of a Gaussian profile F(s∗) and
third and fourth order derivatives of a Gaussian:
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The argument of the Gaussian profile is defined as
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s + f̄1
√

1 + f̄2
=
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√
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The line deformations imposed by the slow wave cause,
firstly, a Doppler shift in the line by vD=− f̄1vth,0 to the blue
wing, secondly a non-thermal line broadening ∆vNT= f̄ 1/22 vth,0
and, thirdly, an asymmetry through the term involving the
third derivative of F. Using Eq. (9) it can be seen that for

a heavy ion with cs & vth,0 , the non-thermal line broaden-
ing is approximately equal to ∆vNT ≈ acs cosα/

√
2. There-

fore, mainly through its velocity perturbation, the slow wave
produces a line broadening that is proportional to the wave
amplitude. The Doppler velocity and line broadening are
strongly correlated. For instance, a Doppler velocity of 5 km
s−1 has an associated non-thermal line width of approximately
20 km s−1, consistent with observations reported by Hara et al.
(2008). Furthemore, for an iron emission line, using Eq. (9),
f̄3 ≈10a2. Therefore, a slow wave with a relative amplitude
of 5% is likely to produce an average line asymmetry of the
order of a few percent. Figure 2 shows the Doppler shift, line
broadening and line asymmetry as a function of a using Eqs.
(2)-(5). Figure 2 shows that vD and ∆vNT follow the analytical
approximations in the range of observed amplitudes.
The line asymmetry is characterised using quantities B and

R, which are the integrated intensity between 1 and 3 line
widths from the line centre in the red and blue wings of the
line, respectively. Hence, (R − B)/(R + B) gives a measure
of the asymmetry in the wings of the line profile with nega-
tive values representing an excess in the blue wing (De Pon-
tieu et al. 2009). An alternative measure of line asymmetry
is skewness, defined as

∫

((s − s0)/σ)3I(s)ds/
∫

I(s)ds where
s0 and σ are the mean and standard deviation of the line. It
is consistent with the R-B measure in showing a bias towards
the blue wing for small amplitudes and red wing bias for large
amplitudes where the average line forms a heavier red wing.
Figure 2 shows that both measures show similarly a growing
blue-wing bias as a function of wave amplitude.

3.2. Asymmetry of a multi-component line
First, we consider the profile of an emission line which con-

stitutes emission from two plasma components in the line-of-
sight, (1) a quasi-static ‘background’ and (2) the plasma struc-
ture supporting a propagating slow wave. The ‘background’
plasma refers here to another plasma in the same line-of-sight
distinct from the ‘background equilibrium’ plasma structure
through which the slow wave is propagating. This is mod-
elled for small amplitudes using Eq. (6) by replacing the term
of O(1) in f0 by 1 + Ibg/I0, where Ibg is the background and
I0 is the structure’s equilibrium plasma emission. Figure 1 il-
lustrates that for two oscillation phases, φ=0, π, the effect of
the slow wave on the combined line is variations in intensity,
Doppler shift, line width and line asymmetry, the strength of
which depends on Ibg/I0. The intensity and Doppler velocity
variations are reduced by a factor 1/(1 + Ibg/I0). Therefore,
even though the slow wave may have a large amplitude, the
resulting intensity and Doppler velocity may be small. Again,
the contributions of order O(a2) in Eq. (6) introduce stronger
emission in the blue wing. Figure 3 shows an example of the
simulated spectral line signatures from a single Gaussian fit
to the line as a function of time for a slow wave with a pe-
riod of 5 minutes and a=0.15, and a static plasma component
with Ibg=2I0. Oscillations of reduced amplitude are seen in
the intensity and Doppler velocity. Also, the line width has
the tendency to show a half-period oscillation with an ampli-
tude of approximately 1 km s−1 and is caused by an excursion
of the wave contributed line towards both blue and red wing
of the static line. The spectral signatures are consistent with
recent observations by De Pontieu &McIntosh (2010), except
for the half-period oscillation in the line-width. However, the
addition of a modest steady upflow as reported could diminish
the excursions into the red wing of the static line and cause the

- Doppler shift to the blue wing

- Non-thermal broadening

acs=5km/s ⇒ ∆vNT=20 km/s [Hara et al 2008]

- Line asymmetry
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and F(s)=exp(−s2/2). The equilibrium thermal speed is re-
lated to the equilibrium line width as vth,0/c0 = ∆λ0/λ0. Ex-
pansion (6) is similar to the Gaussian-Hermite expansion of
spectral lines (Van der Marel & Franx 1993), which can
be seen by identifying dmF(s)/dsm = (−1)mF(s)Hm(s) where
Hm(s) is the Hermite polynomial of order m (Abramowitz &
Stegun 1965).
Since the perturbations are all proportional to a cosφ, when

averaged over an oscillation period, only the equilibrium and
quadratic perturbation terms have non-zero contributions. We
denote time-averaged quantities by a bar. The average inten-
sity Ī(s) = (ω/2π)

∫ 2π/ω
0 I(s, t)dtmay be written with the aver-

age emission ε(s) as the sum of a Gaussian profile F(s∗) and
third and fourth order derivatives of a Gaussian:
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The argument of the Gaussian profile is defined as
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s + f̄1
√
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The line deformations imposed by the slow wave cause,
firstly, a Doppler shift in the line by vD=− f̄1vth,0 to the blue
wing, secondly a non-thermal line broadening ∆vNT= f̄ 1/22 vth,0
and, thirdly, an asymmetry through the term involving the
third derivative of F. Using Eq. (9) it can be seen that for

a heavy ion with cs & vth,0 , the non-thermal line broaden-
ing is approximately equal to ∆vNT ≈ acs cosα/

√
2. There-

fore, mainly through its velocity perturbation, the slow wave
produces a line broadening that is proportional to the wave
amplitude. The Doppler velocity and line broadening are
strongly correlated. For instance, a Doppler velocity of 5 km
s−1 has an associated non-thermal line width of approximately
20 km s−1, consistent with observations reported by Hara et al.
(2008). Furthemore, for an iron emission line, using Eq. (9),
f̄3 ≈10a2. Therefore, a slow wave with a relative amplitude
of 5% is likely to produce an average line asymmetry of the
order of a few percent. Figure 2 shows the Doppler shift, line
broadening and line asymmetry as a function of a using Eqs.
(2)-(5). Figure 2 shows that vD and ∆vNT follow the analytical
approximations in the range of observed amplitudes.
The line asymmetry is characterised using quantities B and

R, which are the integrated intensity between 1 and 3 line
widths from the line centre in the red and blue wings of the
line, respectively. Hence, (R − B)/(R + B) gives a measure
of the asymmetry in the wings of the line profile with nega-
tive values representing an excess in the blue wing (De Pon-
tieu et al. 2009). An alternative measure of line asymmetry
is skewness, defined as

∫

((s − s0)/σ)3I(s)ds/
∫

I(s)ds where
s0 and σ are the mean and standard deviation of the line. It
is consistent with the R-B measure in showing a bias towards
the blue wing for small amplitudes and red wing bias for large
amplitudes where the average line forms a heavier red wing.
Figure 2 shows that both measures show similarly a growing
blue-wing bias as a function of wave amplitude.

3.2. Asymmetry of a multi-component line
First, we consider the profile of an emission line which con-

stitutes emission from two plasma components in the line-of-
sight, (1) a quasi-static ‘background’ and (2) the plasma struc-
ture supporting a propagating slow wave. The ‘background’
plasma refers here to another plasma in the same line-of-sight
distinct from the ‘background equilibrium’ plasma structure
through which the slow wave is propagating. This is mod-
elled for small amplitudes using Eq. (6) by replacing the term
of O(1) in f0 by 1 + Ibg/I0, where Ibg is the background and
I0 is the structure’s equilibrium plasma emission. Figure 1 il-
lustrates that for two oscillation phases, φ=0, π, the effect of
the slow wave on the combined line is variations in intensity,
Doppler shift, line width and line asymmetry, the strength of
which depends on Ibg/I0. The intensity and Doppler velocity
variations are reduced by a factor 1/(1 + Ibg/I0). Therefore,
even though the slow wave may have a large amplitude, the
resulting intensity and Doppler velocity may be small. Again,
the contributions of order O(a2) in Eq. (6) introduce stronger
emission in the blue wing. Figure 3 shows an example of the
simulated spectral line signatures from a single Gaussian fit
to the line as a function of time for a slow wave with a pe-
riod of 5 minutes and a=0.15, and a static plasma component
with Ibg=2I0. Oscillations of reduced amplitude are seen in
the intensity and Doppler velocity. Also, the line width has
the tendency to show a half-period oscillation with an ampli-
tude of approximately 1 km s−1 and is caused by an excursion
of the wave contributed line towards both blue and red wing
of the static line. The spectral signatures are consistent with
recent observations by De Pontieu &McIntosh (2010), except
for the half-period oscillation in the line-width. However, the
addition of a modest steady upflow as reported could diminish
the excursions into the red wing of the static line and cause the
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and F(s)=exp(−s2/2). The equilibrium thermal speed is re-
lated to the equilibrium line width as vth,0/c0 = ∆λ0/λ0. Ex-
pansion (6) is similar to the Gaussian-Hermite expansion of
spectral lines (Van der Marel & Franx 1993), which can
be seen by identifying dmF(s)/dsm = (−1)mF(s)Hm(s) where
Hm(s) is the Hermite polynomial of order m (Abramowitz &
Stegun 1965).
Since the perturbations are all proportional to a cosφ, when

averaged over an oscillation period, only the equilibrium and
quadratic perturbation terms have non-zero contributions. We
denote time-averaged quantities by a bar. The average inten-
sity Ī(s) = (ω/2π)

∫ 2π/ω
0 I(s, t)dtmay be written with the aver-

age emission ε(s) as the sum of a Gaussian profile F(s∗) and
third and fourth order derivatives of a Gaussian:
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The argument of the Gaussian profile is defined as
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The line deformations imposed by the slow wave cause,
firstly, a Doppler shift in the line by vD=− f̄1vth,0 to the blue
wing, secondly a non-thermal line broadening ∆vNT= f̄ 1/22 vth,0
and, thirdly, an asymmetry through the term involving the
third derivative of F. Using Eq. (9) it can be seen that for

a heavy ion with cs & vth,0 , the non-thermal line broaden-
ing is approximately equal to ∆vNT ≈ acs cosα/
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2. There-

fore, mainly through its velocity perturbation, the slow wave
produces a line broadening that is proportional to the wave
amplitude. The Doppler velocity and line broadening are
strongly correlated. For instance, a Doppler velocity of 5 km
s−1 has an associated non-thermal line width of approximately
20 km s−1, consistent with observations reported by Hara et al.
(2008). Furthemore, for an iron emission line, using Eq. (9),
f̄3 ≈10a2. Therefore, a slow wave with a relative amplitude
of 5% is likely to produce an average line asymmetry of the
order of a few percent. Figure 2 shows the Doppler shift, line
broadening and line asymmetry as a function of a using Eqs.
(2)-(5). Figure 2 shows that vD and ∆vNT follow the analytical
approximations in the range of observed amplitudes.
The line asymmetry is characterised using quantities B and

R, which are the integrated intensity between 1 and 3 line
widths from the line centre in the red and blue wings of the
line, respectively. Hence, (R − B)/(R + B) gives a measure
of the asymmetry in the wings of the line profile with nega-
tive values representing an excess in the blue wing (De Pon-
tieu et al. 2009). An alternative measure of line asymmetry
is skewness, defined as
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s0 and σ are the mean and standard deviation of the line. It
is consistent with the R-B measure in showing a bias towards
the blue wing for small amplitudes and red wing bias for large
amplitudes where the average line forms a heavier red wing.
Figure 2 shows that both measures show similarly a growing
blue-wing bias as a function of wave amplitude.
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First, we consider the profile of an emission line which con-

stitutes emission from two plasma components in the line-of-
sight, (1) a quasi-static ‘background’ and (2) the plasma struc-
ture supporting a propagating slow wave. The ‘background’
plasma refers here to another plasma in the same line-of-sight
distinct from the ‘background equilibrium’ plasma structure
through which the slow wave is propagating. This is mod-
elled for small amplitudes using Eq. (6) by replacing the term
of O(1) in f0 by 1 + Ibg/I0, where Ibg is the background and
I0 is the structure’s equilibrium plasma emission. Figure 1 il-
lustrates that for two oscillation phases, φ=0, π, the effect of
the slow wave on the combined line is variations in intensity,
Doppler shift, line width and line asymmetry, the strength of
which depends on Ibg/I0. The intensity and Doppler velocity
variations are reduced by a factor 1/(1 + Ibg/I0). Therefore,
even though the slow wave may have a large amplitude, the
resulting intensity and Doppler velocity may be small. Again,
the contributions of order O(a2) in Eq. (6) introduce stronger
emission in the blue wing. Figure 3 shows an example of the
simulated spectral line signatures from a single Gaussian fit
to the line as a function of time for a slow wave with a pe-
riod of 5 minutes and a=0.15, and a static plasma component
with Ibg=2I0. Oscillations of reduced amplitude are seen in
the intensity and Doppler velocity. Also, the line width has
the tendency to show a half-period oscillation with an ampli-
tude of approximately 1 km s−1 and is caused by an excursion
of the wave contributed line towards both blue and red wing
of the static line. The spectral signatures are consistent with
recent observations by De Pontieu &McIntosh (2010), except
for the half-period oscillation in the line-width. However, the
addition of a modest steady upflow as reported could diminish
the excursions into the red wing of the static line and cause the
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and F(s)=exp(−s2/2). The equilibrium thermal speed is re-
lated to the equilibrium line width as vth,0/c0 = ∆λ0/λ0. Ex-
pansion (6) is similar to the Gaussian-Hermite expansion of
spectral lines (Van der Marel & Franx 1993), which can
be seen by identifying dmF(s)/dsm = (−1)mF(s)Hm(s) where
Hm(s) is the Hermite polynomial of order m (Abramowitz &
Stegun 1965).
Since the perturbations are all proportional to a cosφ, when

averaged over an oscillation period, only the equilibrium and
quadratic perturbation terms have non-zero contributions. We
denote time-averaged quantities by a bar. The average inten-
sity Ī(s) = (ω/2π)

∫ 2π/ω
0 I(s, t)dtmay be written with the aver-

age emission ε(s) as the sum of a Gaussian profile F(s∗) and
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√
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The line deformations imposed by the slow wave cause,
firstly, a Doppler shift in the line by vD=− f̄1vth,0 to the blue
wing, secondly a non-thermal line broadening ∆vNT= f̄ 1/22 vth,0
and, thirdly, an asymmetry through the term involving the
third derivative of F. Using Eq. (9) it can be seen that for

a heavy ion with cs & vth,0 , the non-thermal line broaden-
ing is approximately equal to ∆vNT ≈ acs cosα/

√
2. There-

fore, mainly through its velocity perturbation, the slow wave
produces a line broadening that is proportional to the wave
amplitude. The Doppler velocity and line broadening are
strongly correlated. For instance, a Doppler velocity of 5 km
s−1 has an associated non-thermal line width of approximately
20 km s−1, consistent with observations reported by Hara et al.
(2008). Furthemore, for an iron emission line, using Eq. (9),
f̄3 ≈10a2. Therefore, a slow wave with a relative amplitude
of 5% is likely to produce an average line asymmetry of the
order of a few percent. Figure 2 shows the Doppler shift, line
broadening and line asymmetry as a function of a using Eqs.
(2)-(5). Figure 2 shows that vD and ∆vNT follow the analytical
approximations in the range of observed amplitudes.
The line asymmetry is characterised using quantities B and

R, which are the integrated intensity between 1 and 3 line
widths from the line centre in the red and blue wings of the
line, respectively. Hence, (R − B)/(R + B) gives a measure
of the asymmetry in the wings of the line profile with nega-
tive values representing an excess in the blue wing (De Pon-
tieu et al. 2009). An alternative measure of line asymmetry
is skewness, defined as

∫

((s − s0)/σ)3I(s)ds/
∫

I(s)ds where
s0 and σ are the mean and standard deviation of the line. It
is consistent with the R-B measure in showing a bias towards
the blue wing for small amplitudes and red wing bias for large
amplitudes where the average line forms a heavier red wing.
Figure 2 shows that both measures show similarly a growing
blue-wing bias as a function of wave amplitude.

3.2. Asymmetry of a multi-component line
First, we consider the profile of an emission line which con-

stitutes emission from two plasma components in the line-of-
sight, (1) a quasi-static ‘background’ and (2) the plasma struc-
ture supporting a propagating slow wave. The ‘background’
plasma refers here to another plasma in the same line-of-sight
distinct from the ‘background equilibrium’ plasma structure
through which the slow wave is propagating. This is mod-
elled for small amplitudes using Eq. (6) by replacing the term
of O(1) in f0 by 1 + Ibg/I0, where Ibg is the background and
I0 is the structure’s equilibrium plasma emission. Figure 1 il-
lustrates that for two oscillation phases, φ=0, π, the effect of
the slow wave on the combined line is variations in intensity,
Doppler shift, line width and line asymmetry, the strength of
which depends on Ibg/I0. The intensity and Doppler velocity
variations are reduced by a factor 1/(1 + Ibg/I0). Therefore,
even though the slow wave may have a large amplitude, the
resulting intensity and Doppler velocity may be small. Again,
the contributions of order O(a2) in Eq. (6) introduce stronger
emission in the blue wing. Figure 3 shows an example of the
simulated spectral line signatures from a single Gaussian fit
to the line as a function of time for a slow wave with a pe-
riod of 5 minutes and a=0.15, and a static plasma component
with Ibg=2I0. Oscillations of reduced amplitude are seen in
the intensity and Doppler velocity. Also, the line width has
the tendency to show a half-period oscillation with an ampli-
tude of approximately 1 km s−1 and is caused by an excursion
of the wave contributed line towards both blue and red wing
of the static line. The spectral signatures are consistent with
recent observations by De Pontieu &McIntosh (2010), except
for the half-period oscillation in the line-width. However, the
addition of a modest steady upflow as reported could diminish
the excursions into the red wing of the static line and cause the



Multiple component spectral line

We consider the line-of-sight integration of plasma with a slow wave and 
a static background plasma component.



Multiple component spectral line

Intensity amplitude and Doppler shift reduce by factor 1/(1 + Ibg/I0).

The real wave amplitude may be quite large.

Appearance of line width and line asymmetry 
variations

Line width may have half period.

Multiple components may be integation along 
loop where amplitude changes with height. 



Conclusions

Slow wave can naturally produce (periodic) signatures of spectral line asymmetry 
and line-width.

The flow model requires always the presence of a static plasma component in the 
line-of-sight everywhere whilst a slow wave model does not need it to produce 
intensity, velocity and line-width perturbations!

Slow waves can naturally explain:
- Sonic propagation speed
- Damping
- Persistence of quasi-periodic signals

The claim more careful spectral observations are needed to distinguish the two 
models may be a red herring as these spectral observations are done at 
(beyond?) the limit of spectrometer capabilities!

In order to test models, a physical model of periodic upflows needs to be 
formulated!


