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Motivating Problem

• Efficiently representing highly anisotropic fields

• Structures elongated along one direction 

→ smaller gradients/wavenumbers

• Require fewer degrees of 

freedom to represent variation

• Generally not aligned with any physical 

coordinate direction

• How to align numerical representation

with physical anisotropy?
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FEM
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Meshfree (EFG)
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Meshfree Challenges

• Computing shape functions and 

derivatives is much more 

expensive

• Requires inversion of a small 
moment matrix at every 
evaluation point

• Must search for nodes with 
non-zero support

• The stability and accuracy of the 

solution are strongly-dependent 

on parameters chosen

• support size and shape, 
node placements, weight 
function, etc.

• Necessitates knowledge and 
intervention by user

• MLS shape functions don't have 

the delta property

• Complicates imposition of 
Dirichlet BCs

• Only inexact quadrature possible

Meshfree schemes are very flexible, but also have drawbacks
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Partially Meshfree Scheme (FCIFEM)
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Example FCIFEM Basis Functions
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Poisson's Equation with Dirichlet Boundaries
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Local Flux Conservation

• Can prove similar conservation at 

quadrature points for any Galerkin 

scheme

• Requires test functions form 
a partition of unity

• Operator must be evaluated 
using integration by parts

Hughes et al. showed the standard continuous Galerkin method is locally conservative w.r.t. point-wise fluxes at 

the nodes; however, this relies on the exactness of quadrature in standard FEM
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Inexact Quadrature

• Chen et al. derived variationally consistent integration constraints the quadrature scheme must fulfill to achieve 

optimal convergence

• Also suggested an assumed strain method to decouple corrections by modifying the test functions

• This makes them no longer a partition of unity and negates conservation

• We propose adding corrections to quadrature weights instead of test functions

• Means the corrections are coupled → need to solve linear system(s)

• Seems to work very well!
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Variationally Consistent Integration

J. S. Chen et al. 2013 doi.org/10.1002/nme.4512 11
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Higher Order Bases (ongoing/future work...)

Not obvious how to directly extend to higher orders, and boundaries still a bit of a pain to implement.

Trying a "fully" meshfree approach instead, still using similar arrangement of nodes.
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Higher Order Bases (preliminary results)
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Questions?

Thanks for listening!
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