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Motivating Problem

Efficiently representing highly anisotropic fields
Structures elongated along one direction
— smaller gradients/wavenumbers

* Require fewer degrees of
freedom to represent variation

Generally not aligned with any physical
coordinate direction

How to align numerical representation
with physical anisotropy?
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http://people.maths.ox.ac.uk/suli/fem.pdf

Meshfree (EFG) Nodes
N,

n

u(X,t) & (X, 1) = Y ur(t)®r(x)

I=1

FEM ¢i(x) Y

both linear
Meshfree D/ (x)
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Meshfree Challenges

Meshfree schemes are very flexible, but also have drawbacks

* Computing shape functions and ® The stability and accuracy of the ® MLS shape functions don't have
derivatives is much more solution are strongly-dependent the delta property
expensive on parameters chosen . . .
* Complicates imposition of
* Requires inversion of a small « support size and shape, Dirichlet BCs
moment matrix at every node placements, weight
evaluation point function, etc. ) i
* Only inexact quadrature possible
* Must search for nodes with * Necessitates knowledge and
non-zero support intervention by user
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Partially Meshfree Scheme (FCIFEM)

= pPi (X)gbi,FEM (Xmap)
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Example FCIFEM Basis Functions
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Poisson's Equation with Dirichlet Boundaries

Viu = f, f = V%rsin(2nn[y — az® — bx))
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Local Flux Conservation

Hughes et al. showed the standard continuous Galerkin method is locally conservative w.r.t. point-wise fluxes at

the nodes; however, this relies on the exactness of quadrature in standard FEM

® (Can prove similar conservation at
guadrature points for any Galerkin

scheme N, N,
* Requires test functions form E €bz =1 — E V¢z’ =0
a partition of unity i=1 i—=1

* Operator must be evaluated
using integration by parts
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T. J. R. Hughes et al. 2000 doi.org


http://doi.org/10.1006/jcph.2000.6577​

Inexact Quadrature

* Chen et al. derived variationally consistent integration constraints the quadrature scheme must fulfill to achieve

optimal convergence

* Also suggested an assumed strain method to decouple corrections by modifying the test functions

* This makes them no longer a partition of unity and negates conservation

* We propose adding corrections to quadrature weights instead of test functions

* Means the corrections are coupled - need to solve linear system(s)

* Seems to work very well!
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Variationally Consistent Integration

V2u = sin(27z) sin(27y)
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J. S. Chen et al. 2013 ddi.or:


http://doi.org/10.1002/nme.4512

Higher Order Bases (ongoing/future work...)

Not obvious how to directly extend to higher orders, and boundaries still a bit of a pain to implement.
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Trying a "fully" meshfree approach instead, still using similar arrangement of nodes.
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Higher Order Bases (preliminary results)

Viu = %sin(%m[y — z])[1 4 sin(27y)]
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Thanks for listening!
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