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Motivation
Efficient representation and simulation of highly anisotropic fields:
• Structures elongated along one direction =⇒ smaller gradients
• Require fewer degrees of freedom to represent variation
• Need not be aligned with any coordinate direction
Extremely difficult to create a standard mesh conforming to the anisotropy
• Different magnetic regions, e.g. core, SOL/walls, X-point(s), etc.
• Even in core, helical and ergodic field causes difficulties
Want method independent of flux coordinates[1] using unstructured mesh[2] Figure 1: a) Standard mesh regions, b) helical magnetic field. Figs. from[3]

1) Finite Element (FEM) vs. Meshfree Methods
For a Galerkin formulation of either a FEM or meshfree method, one must:
• discretize the domain Ω with a set of Nn nodes xi

• define a set of basis functions φi associated with each node
• expand solution using basis u(x, t) ≈ uh(x, t) =

∑Nn

i=1 ui(t)φi(x)

Figure 2: Standard FEM (left) and meshfree (right) discretizations.

2) Flux Coordinate Independent (FCI) FEM Scheme
Desired Method properties:
• Compact Support: φi(x) = 0 ∀x /∈ Ωi

• Partition of Unity:
∑Nn

i=0 φi(x) = 1 ∀x ∈ Ω

• Delta Property: φi(xj) =
{

1, i = j

0, i 6= j
=⇒ uh(xi, t) = ui(t) ∀xi

Figure 3: FCIFEM scheme discretizing a 2D domain Ω. Evaluation points
are mapped to surrounding mesh on FCI planes and boundaries via a
mapping function Q : Rn × R→ Rn, e.g. Q(x1, ζk) = xL1 = xmap.

The basis functions are formed as a product of two factors

φi = φi,FEM(xmap)ρi(x).

The φi,FEM(xmap) are a standard FEM basis of reduced dimension defined
on standard FEM meshes covering the FCI planes and domain boundaries.
The ρi is a ramp function along the mapping given as

ρi(ζ) = ζ − ζt

ζo − ζt
,

with ζo, ζt of the origin and terminus points xL,xR along the mapping.

3) Implementation
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Figure 4: Example of 2D basis functions in Python implementation with
sinusoidal mapping showing alignment to mapping and partition of unity.

4) Conservation and Convergence Results
Conservation: Hughes et al.[4] showed the standard continuous Galerkin
method is locally conservative w.r.t. point-wise fluxes at the nodes
• We can show that using integration by parts allows a similar result for

FCIFEM w.r.t. point-wise fluxes at the quadrature points
Convergence: ∇2u = f(x, y) on Ω : (0, 1) × (0, 1) with Dirichlet bound-
aries, where f is forcing term giving u(x, y) = x sin

(
2πn[y − ax2 − bx]

)
with n = 3, a = 0.95, b = 0.05, giving quadratically aligned anisotropy.
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Figure 5: (left) L2 error norms for different ratios of grid divisions Nx:Ny,
w/ and w/o mapping aligned to anisotropy, otherwise coordinate aligned
(right) example of well-converged simulation showing anisotropy in u(x, y)
• Essentially 2nd order convergence in all cases
• Alignment reduces error somewhat on its own
• More importantly, it allows for larger ratios, giving lower error for same

number of nodes, whereas unaligned error much worse for 1:4 ratio

References and Acknowledgements
(1) F. Hariri and M. Ottaviani, Comput. Phys. Commun., 2013, 184, 2419–2429.
(2) B. F. McMillan, Comput. Phys. Commun., 2017, 212, 39–46.
(3) F. Zhang, R. Hager et al., Eng. Comput., 2016, 32, 285–293.
(4) T. J. R. Hughes, G. Engel et al., J. Comput. Phys., 2000, 163, 467–488.

Research supported by University of Warwick Chancellor’s International Scholarship.


