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Abstract: Recent improvements in the scale and accuracy of direct numerical simulations 

of isotropic magnetohydrodynamic (MHD) turbulence enable many of its fundamental properties to 

be investigated anew. Here we report progress on questions regarding the small scale dynamics of 
compressible two-dimensional magnetohydrodynamic turbulence.

1. MHD turbulence phenomenology
Scaling exponents (ζζζζp, ττττp) give a statistical description of MHD turbulence

Where                              are the Elsasser field variables, l is a differencing length, νννν is a viscosity,  εεεε
is the local rate of dissipation and D is the number of spatial dimensions

Models:

Random eddy scrambling (Kolmogorov)                     Alfvenic collisions (Iroshnokov / Kraichnan)

Favoured model of 3D MHD turbulence                       Favoured model for 2D MHD turbulence

2. Dissipation structure functions
•1D measure based on Elsasser field gradient

•2D measure,  Ohmic plus viscous dissipation

Where B, v and ρρρρ are evaluated at (x+l1 ,y+l2,t)

4. Numerical Scheme
•We have developed high order finite difference 

simulations of the two dimensional isothermal 

equations of MHD.

•Spatial derivatives are calculated to sixth order

•Time iteration is by third or fourth order Runge-

Kutta scheme.

•The fourth order scheme remains stable for 

steeper gradients than for third order.

•Higher Reynolds numbers can be achieved 

at fourth order

•However, the fourth order scheme has less 

numerical diffusion so is more susceptible to 

the “chequer board” instability in density

•The figure (right) shows an example of the 
current density obtained from 10242 driven 

turbulence run.
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3. Extended Self-Similarity (ESS)
•Direct Numerical Simulation (DNS) must fully resolve the dissipation range to prevent the ‘pile up’ of 
energy at small scales

•Most resolution is used for this purpose thus inertial ranges are small

•Use Extended Self-Similarity (ESS) which extends the scaling laws into the dissipation range such 
that:

In the inertial range                       In the inertial and dissipation range

•Models used to explain these scaling laws often use the refined similarity hypothesis. Two versions 
of this are shown below in ESS compatible form.

Random eddy scrambling                                  Alfvenic collisions 

Kolmogorov 1941 (K41)                                                     Iroshnokov / Kraichnan (IK)

•Directly testing these relations is an important consistency check for currently favored models of 
turbulence.
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5.Decaying turbulence
•Turbulence decaying so structure 

functions from different times 

normalised to total energy

•Effect of normalisation and ESS

procedure shown on plot A

•Initial conditions as specified in [1]

•Resolution is 10242

•Values of recovered exponents are                               

consistent with those found for                                            

incompressible flows in [1] (plot B)

•Scaling exponents seem to be robust for a                       

range of sub-sonic Mach numbers       

7. Conclusions and further work
•Extended Self-Similarity has been found in the Elsasser field variables for both driven and decaying 

isothermal compressible MHD turbulence.

•Driven simulations have been performed with long runtimes (1200 snapshots each separated by a 

few large eddy turn over times).

•In the driven case it is found that exponents calculated from the z(+) and z(-) fields agree to within 
errors providing statistics are harvested from a large enough quantity of snap shots.

•The good quality statistics obtainable from driven runs with long runtimes enable the refined 

similarity hypothesis to be investigated (see plot D of section 6)

-Although good power-law scaling is observed, there are deviations from the ideal value of one.

-This may suggest a correction needs to be made to the IK relation in section 3.

-This may also suggest that the 1D measure used to calculate <εεεεp
l> does not capture the scaling 

properties of dissipation for compressible MHD turbulence. This 1D measure has previously been 

applied to incompressible simulations and the solar wind [2],[3].

-Further investigation is needed in this area including an evaluation of the effect of varying the 

sound speed (and hence compressibility) and using the full 2D measure for <εεεεp
l> shown in section 

2. 
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Figure A. shows Extended self-similarity (ESS) in 

Elsasser field structure functions (see section 2) for 
order 4 against order 3. Points are calculated from 

eight snapshots spanning a total time of 4 initial 

eddy turnover times. Normalisation by total energy 

shows the points lie on the same slope despite the 
decay process.

Figure B. shows the ratio of scaling exponents 

recovered by ESS (triangles). Those recovered 

for incompressible MHD decaying turbulence by 

Biskamp and Schwarz [1] are shown as crosses. 
The bold line shows exponents predicted by an 

IK based She-Leveque model. Neither set of 

exponents can be said to fit this model. Further 

investigation is needed.
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6.Driven turbulence
•Turbulence driven by maintaining the energy of all Fourier modes with 0<k<2.5

•Velocity magnetic field correlation is constrained at ≈ 15% throughout the simulation

•Statistics are calculated from ≈ 1200 snapshots to obtain statistical accuracy for high order moments. 
Each snap shot is separated by 3-4 large eddy turnover times.

•Resolution is 5122

Figure C. shows the ratio of scaling exponents 
recovered by ESS for both Elsasser field variables 

(see legend). The black line shows exponents 

predicted by an IK based She-Leveque model. 

Errors are calculated as the maximum gradient 

variation allowed by the error of each point on a 
loglog plot. This error estimation combined with long 

runtimes lead to scaling exponents that agree to 

within errors for both Elsasser fields.
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Figure D. Is an example of a plot that directly 

tests the IK relation shown in section 3. If this 

relation were true, the gradient of this graph 
would be 1.0. <εεεεp

l> is calculated using the 1D 

measure shown in section 3. The observed 

deviation of the gradient from the ideal value of 1 

becomes more pronounced as the order of the 

measure p increases. This could indicate that a 
correction is needs to be added to this relation or 

that the 1D simplification used to calculate <εεεεp
l>

is not adequate for compressible MHD.
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