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Scaling Laws

• Branching Process (Direct Cascade shown here)
– Large Scale eddies (pumping or driving scale)
– Cascade to smaller scales unaffected by dissipation (inertial range)
– Dissipate at small scales (dissipative range)

• At length scales far from the
driving or dissipation scale
A→B is a scaled version of
B→C

• This is captured by scaling laws
– Structure functions
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Elsasser Field Structure Functions Sp
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•Describes Left and Right travelling Alfvenic disturbances

•Can describe incompressible equations of MHD in Elsasser
symmetric form see Biskamp, MHD Turbulence, Camb. Univ. Press 
2003

•Construct Elsasser field structure functions (Sp
l) to describe Magneto-

kinetic fluid 

Fluid Interpretation of Structure Function 
Scaling Laws (Fluid Phenomenology)
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Kolmogorov 1941 (K41):
local in k space
nonlinear process is random eddy scrambling 
g=3, α=3

Iroshnikov-Kraichnan (IK) Kraichnon, POF, 1965 :
non-local in k space
nonlinear process is governed by Alfvenic collisions
g=4, α=4 

εεεεl = local rate of dissipation 
averaged over ball of radius l
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Universal Scaling Laws In Turbulence
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•Sl
(±±±±)p and χχχχl

p constructed from simulation to determine ξξξξp and ττττp

•χχχχl acts as a 1D surrogate to εεεεl for which we anticipate the same 
scaling see Sreenivasan Annu. Rev. Fluid Mech. 1997 

• Scaling laws attractive; exponents independent of flow 
detail provided homogenous and isotropic

•Universal

She-Leveque (1994) Intermittency Correction
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•Refined Similarity Hypothesis gives:

•In practice Sl
(±±±±) does not behave as IK or K41

→ Intermittent eddy activity .... use theory of She-Leveque

• All parameters have a physical interpretation; Co = codimension
of most dissipative structures
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The DNS Biskamp and Muller, POP, 2000

• Pseudo-spectral 
incompressible MHD solver

• 5123 Fourier modes 
– 3 dimensional

• Turbulence is decaying:
– Smooth time evolution so 

relatively few large eddy turn over 
times give good statistics

– Results independent of any 
driving scheme

• Micro-scale Re = 94
• Kinematic Viscosity = Magnetic 

Diffusivity
2D sli ce of velocity magnitudes from 3D 
simulation

Normalisation and Extended Self-Similarity

• Since turbulence decaying, need normalisation before time 
averaging
– Elsasser fields normalised to total energy (E)
– χχχχl normalised to average local rate of dissipation (<εεεε>)

S’ lp = Sl
p /Ep/2 and χχχχ’ lp = χχχχl

p/<εεεε>p

• Find scaling laws from DNS via Extended Self Similarity (ESS), 
see Benzi et al., PRE, 1993
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• these hold in the inertial and dissipative range (above the 
dissipative length scale)

• Scaling law is extended into the dissipative range.
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Known: ESS in Elsasser fields (as 
investigated in Biskamp and Muller, 
POP, 2000)
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•Structure 
functions time 
averaged

•Values for ξξξξp/ξξξξ3
measured

Known: Scaling Exponents for Sheet-
like Dissipation

Blue curve is overlay of ξp/ξ3
with

g = 3   α = 3 (K41)

Co = 1 (most intensely 
dissipating structures are 
sheet-like )

see Biskamp and Muller, 
POP, 2000
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New: ESS in 1D Surrogate of 
Dissipation
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SL scaling of Biskamp
and Muller, POP, 2000
requires this self 
similarity in χχχχl

p

Scaling recovered 
relies mostly on small l 
measurements →
dissipative range

•Break of scaling at 
large l could be finite 
size effect

Recover Scaling Exponents

Blue curve is an overlay 
of τp/τ3

g = 3   α = 3 (K41)

Co = 1 (sheet-like most 
intensely dissipating 
structures)   
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Application to Solar Wind despite 
mean     anisotropy

• Has been applied to ion thermal velocities measured 
from ACE see A. Bershadskii, POP, 2003

• Effect of mean field on exponents is quite weak for 
fluctuations ⊥ to 

• Smooth crossover to 2D behaviour seen for large 

B

B
B

Conclusions

• New: Self-similarity has been demonstrated in the 
local rate of dissipation using ESS
– This is an expected corollary of the SL 

interpretation given in Biskamp and Muller, POP, 
2000

• Ratios of measured scaling exponents support the 
findings of Biskamp and Muller, POP, 2000
– Non-linear transfer by random eddy scrambling
– Most strongly dissipating structures are sheet-like


