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1 Introduction

Turbulent fluids and plasmas display three properties that motivate development of

statistical theories: (i) disorganisation in the sense that structures arise on all scales; (ii)

unpredictability of detailed behaviour; and (iii) reproducibility of statistical measures.

Much progress has been made by the heuristic treatment of scaling laws derived from

energy cascade arguments. The basic idea is that energy carrying structures (eddies)

are injected on large scales, non-linear eddy interaction causes the cascade of energy to

smaller scales, and energy is finally dissipated by viscosity on small scales. A quasi-

stationary state evolves where the rate of viscous dissipation matches the rate of energy

injection. Heuristic arguments predict the scaling exponents ζp that characterise the

statistical self-similarity found in structure functions Sp
l :

Sp
l = 〈(v(x + l, t).l/l − v(x, t).l/l)p〉 ∼ lζp (1)

Here v is the fluid velocity, x is a position vector, l is a differencing vector and the average

is over time and space. The statistical self-similarity represented by the power-law in l

is only valid within the inertial range l0 ¿ l ¿ ld; here l0 is the characteristic macro-

scale, and ld is the dissipation scale at which the cascade terminates. The set of scaling

exponents ζp is expected to be universal since it characterises the generic cascade process.

Heuristic arguments can only give linear relations of ζp to p, for example the Kolmogorov

1941 phenomenology [3, 4] predicts ζp = p/3. In reality ζp depends nonlinearly on p due

to the intermittent spatial distribution of eddy activity. A commonly applied class of

intermittency correction describes statistical self-similarity in the local rate of dissipation

εl by means of scaling exponents τp:

εp
l ≡ 〈

(

ν

4πl3

∫ l

0

1

2
(∂ivj(x + l′, t) + ∂jvi(x + l′, t))

2
dl′3
)p

〉 ∼ lτp (2)

The scaling exponents ζp are then inferred by Kolmogorov’s refined similarity hypothesis

[4] ζp = τp/3 + p/3. To exploit such concepts let us write the equations of incompressible

MHD in Elsässer symmetric form:



∂tz
± = −z∓.∇z± −∇

(

p + B2/2
)

+ (ν/2 + η/2)∇2z± + (ν/2 − η/2)∇2z∓ (3)

Here the Elsässer field variables are z± = v ± B/ (µ0ρ), p is the scalar pressure, ν is

kinematic viscosity, η is magnetic diffusivity and ρ is fluid density. The symmetry of

Eq.(3) suggests that statistical treatment of z± may be more fundamental than separate

treatments of v and B. In light of this, structure functions are constructed in terms of

Elsässer field variables hereafter

S
p(±)
l = 〈

(

z(±)(x + l, t).l/ | l | −z(±)(x, t).l/ | l |
)p
〉 ∼ lζ

(±)
p (4)

The scaling exponents ζ (±) were investigated by Biskamp and Müller [2] via direct nu-

merical simulation of the incompressible MHD equations, with a spatial gid 5123. The

simulation is of decaying turbulence with initially equal magnetic and kinetic energy

densities and ν = η. Since the turbulence decays with time, structure functions are

normalised by the total energy in the simulation before time averaging takes place. Di-

rect numerical simulations must resolve the dissipation scale ld so that energy does not

accumulate at large wavenumbers, artificially stunting the cascade. Most of the numer-

ical resolution is therefore used on the dissipation range, whereas it is only on scales

much larger than ld that dissipative effects are negligible, and scaling laws of the type

discussed arise. Thus high Reynolds number simulations with an extensive inertial range

are currently unavailable. However, the principle of extended self-similarity (ESS) [5]

can be used to extend the inertial range scaling laws into the range of length scales that

is significantly affected by dissipation but still larger than ld:

S
p(±)
l ∼ S

q(±)(ζp/ζq)
l (5)

Biskamp and Müller extracted the ratios of scaling exponents ζp/ζ3 by this method,

and found them to match a variant of the She-Leveque (SL) 1994 model [1], see Fig.

1. In SL models, once the basic fluid scaling is determined, only one more parameter

is required - the dimension of the non-spacefilling coherent structures that are most

intensely dissipating. The SL model postulated by Biskamp and Müller [2, 6] combines

the Kolmogorov fluid scaling with two dimensional most intensely dissipating structures,

consistent with the tendency of MHD flows to dissipate through the formation of current

sheets. For the application of this model to be theoretically consistent, ESS scaling must

be present in the local rate of dissipation. This is investigated in the present work.
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Fig. 1: Extended self-similarity for the Elsässer field variable z
(+) (order five against order three), for

decaying MHD turbulence where structure functions are normalised by the total energy before time
averaging. This normalisation reveals the same underlying scaling for points from different simulation
times, as shown. After Biskamp and Müller [2].

2 Results

The gradient squared measure (∂iz
(±)
i )2 is used as a proxy for the local rate of dissipation

(∂iBj − ∂jBi)
2 η/2 + (∂ivj + ∂jvi)

2 ν/2, so that statistical self-similarity implies [4]

χ
p(±)
l ≡ 〈

(

1

l

∫ l

0

(

∂iz
(±)
i (x + l′, t)

)2

dl′
)p

〉 ∼ lτ
(±)
p (6)

and the SL model adopted by Biskamp and Müller predicts

τ (±)
p = −2p/3 + 1 − (1/3)p (7)

Normalisation by the spatial average of viscous plus Ohmic rates of dissipation allows

time averaging to be performed. Figure 2 shows an example of the ESS and normalisation

procedure for χ
(+)
l order five against order three. Statistical self-similarity is recovered at

least for smaller values of l. The roll-off from power law behaviour at large l may be due

to the finite size of the system, since a more extensive part of the simulation domain is

encompassed by the spatial average as l increases in Eq. (6). In Fig. 2 points identified

with this roll-off are removed, and ratio of scaling exponents (τp/τ3) is calculated from

the remaining points by linear regression. These ratios are shown in Fig. 3. The solid

line in Fig. 3 shows the ratio predicted by Eq. (7), in contrast to the dashed line which

shows the ratio predicted by the SL theory for hydrodynamic turbulence [1].
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Fig. 2: Extended self-similarity in the Elsässer field
variable z

(+) gradient squared proxy for the local
rate of dissipation (order five against order three).
Normalisation by the space averaged local rate of
viscous and Ohmic dissipation allows time averag-
ing in spite of the decay process. Deviation from
power law scaling at large l is probably a finite size
effect. Solid line is the best fit in the linear region.
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Fig. 3: Ratio of scaling exponents (order p over
order three) obtained via extended self-similarity
from the Elsässer field gradient squared proxy for
the local rate of dissipation. Solid line shows ra-
tios predicted by a She-Leveque theory based on
Kolmogorov fluid scaling and sheet-like most in-
tensely dissipating structures. Dashed line shows
ratios predicted by hydrodynamic She-Leveque [1].

3 Conclusions

Extended self-similarity is recovered in the gradient squared proxy for the local rate of

dissipation of the Elsässer field variables z(±) computed by Biskamp and Müller. We

believe this is the first time this has been shown for MHD flows. This result supports the

application to Elsässer field scaling exponents ζ
(±)
p of turbulence theories that require

statistical self-similarity in the local rate of dissipation, even when ζ
(±)
p are extracted

from relatively low Reynolds number flows via ESS. Furthermore the ratio of expo-

nents recovered is that predicted by the SL theory proposed by Biskamp and Müller

[2]. This supplies further evidence that the cascade mechanism in MHD turbulence is

non-linear random eddy scrambling, with the level of intermittency determined by dis-

sipation through the formation of current sheets.
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