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m Mirror Mode Structures
= Instability found in pressure anisotropic plasma
m However, the SW tends to be mirror stable
m Suggestion is that MHs are remnants of mirror-mode structures

m DNLS Soliton

m DNLS is an evolutionary equation derived from Hall-MHD
m MHs signatures of DNLS soliton

m DNLS not applicable in § ~ 1 plasmas

m Cannot tell us anything about stability
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= RHP Alfvénic Wavepackets (AWP) and the Ponderomotive
Force (PF)

m Simulations by Buti et al. (2000) suggest that RHP AWPs
collapse into MHs

m Dynamic process supported by Hybrid Simulations

m PF identified as important for strong pulses

m PF accelerates particles perpendicular to wave propagation, so
MHs could be caused by diamagnetic effects (Tsurutani et al,
2002)

m Slow mode solitons

m Stasiewicz (2005) reinterprets the mirror mode structures as
slow mode solitons

m Works within the framework of Hall-MHD
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Model Premise

m Consider an 1.5D Hall-MHD model

m Move into time independent frame moving with a wave with
speed Ma = vy /va at an angle 6 to the magnetic field.

m Assume a polytropic equation of state
pL = pion’
® Introduce an anisotropy parameter a,

P
ap=—-1
P pL

m Use the spatially integrated momentum equation and the curl
of Ohm’s law



HE UNIVERSITY OF MHs: The Fluid Description The governing equations

WA KVY/I CK Results

Model Equatio

0 = 2M3(n"t=1)+B3(n" — 1)+ b*> — 1+ b3ya,B (b2 — 1)

0

—b, = f(b)— bug(b)
0

&bz = byg(b).
with

f(b) = bson(b) [1_/\;2< _apzﬁﬂ

X

gb) = 1- ”A(/I? (1 - a”fnv(b)w)

System of 3 variables n, b,.b, and 5 parameters a,, 3,7,0, Ma
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m My < 1, i.e. we are dealing slow moving structures and can
write My = eM,. This is supported by satellite data (e.g.
Stasiewicz 2004)

m 3 ~ 2. The spatial extent of MHs suggests that FLR effects
are not important (Pogutse et al 1998)

= Oblique propagation angle but 6 < 85°
® a, stays constant over the structure.

We consider an O(1) expansion and search for fixed points.
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B My < 1, i.e. we are dealing slow moving structures and can
write My = eMy. This is supported by satellite data (e.g.
Stasiewicz 2004)

m 3 ~ 2. The spatial extent of MHs suggests that FLR effects
are not important (Pogutse et al 1998)

m Oblique propagation angle but 6 < 85°

® a, stays constant over the structure.

We can show b, = 0 at fixed points and label them as either
centre or saddle
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m The equations obtained from the curl of Ohm's law can be
combined to derive an evolutionary equation for b

m Introduce H(b) = [ bg(b)/f(b)db = b, — b,y and
7= [f(b)/bds

m These substitutions yield

>b ,_ bg(b)H(b)]  bbzog(b)
or? f(b) f(b)
= F(b)
m Mathematically equivalent to Newton Il, so we can construct
a pseudo-potential [Simon et al. (submitted)]

_ H(b)? — b?

V(b) 5

+ b,oH(b)
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The O(1) App

The Sagdeev potential

m In the case of slowly moving structures My = €My, one can

show that

Q

Q

Q

b20b>2<0” <apﬁ _ 1)
eMy
b2yn (apﬁ n )
eMy \ 2 b2
B [L+ 6 (L + 3pbs) — 57)
B (6% + apby)
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The O(1) App

The Pseudo-Potential Formalism

m In the case of slowly moving structures My = €My, one can

show that

by ~ Pobor <apﬁ _ )

eMy 2
b2yn (apﬁ n )
eMy \ 2 b2
B [1+0 (1+ %) — &)
B (b + aphZy)

m In this case, one can approximate H(b) by

H(b)zl/b<ap [1+/8(1+apb>2<0>_b2] _1) db

bZO (# _ 1) 2 b2 + apb)%o
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and!

General Potent

m H(b) can be used to calculate the Sagdeev potential for this
problem

m Periodic wave solutions would correspond to oscillations about
a potential minimum

m Solitary wave solutions exist around a potential maximum/
minimum
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Stability of Sol

m All analysis so far has been performed in a time independent
frame, so one can say nothing about stability

m To consider the stability, one can

try to solve the time dependent equations mathematically
run numerical simulations

m Mathematical Analysis suggests that under certain
approximations solitary wave solutions should be stable.

m To check this, we are running hybrid simulations.
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Hybrid Code D

1.5D hybrid code with ion particles and fluid electrons.
Contains periodic boundary conditions.

Allows us to introduce ion-particle effects
Based on Winske (1985)

m Uses massless fluid energy equation to close system of
equations.
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The case for F

m Hybrid simulations can include some kinetic effects, but
assume that the electron kinetic effects are unimportant.

m Lin et al (1995) found evidence of Langmuir wave creation in
the holes. The suggestion is that these waves are created by
electron beams.

m To investigate this phenomenon computationally, one would
require a full PIC simulation.
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Conclusions

Conclusions

m We present slow mode solitary wave solutions to Hall-MHD
which are possible candidates for MHs

m We derive a pseudo potential description which explains
solitary waves as local potential max/min combinations

m We are currently performing hybrid simulations to investigate
the predicted stability of these structures

m In order to fully explain some aspects of MHs, such as
Langmuir wave excitation, one would need a fully kinetic code
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