
Figure 3:  Variation of MI  (circles) and 
susceptibility (crosses) with noise. 50,000 time 
steps were used and the MI and susceptibility 
were averaged over a further 10,000 steps.

Figure 4: Variation of MI calculated from the 
timeseries of two particles' position and 
velocity for 10000 steps (circles) and 
susceptibility of the whole system (crosses) 
with noise.

Mutual Information as a Tool for Identifying Phase 
Transitions in Complex Systems

Introduction:
➢ Growing interest in the use of mutual information  in complex systems, 
physical and life sciences. 
➢ In natural plasmas mutual information  has recently been used [1] [2] to 
quantify the causal linkage between strongly nonlinear timeseries.
➢ Mutual information has previously been shown to identify phase transitions 
in stationary complex systems [3].
➢ Here it is shown to be able to identify the phase transition of a dynamical 
complex system.
➢ We consider the Vicsek model  of self-propelled particles which is a 
biologically motivated complex system [4]. 
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Abstract:
Simple models for flocking in biological systems are of considerable 

interest from a complex systems perspective. We investigate the dynamics of 
the Vicsek model of interacting self propelled particles using mutual 
information. The mutual information of the system is found to peak at the phase 
transition in a similar manner to the susceptibility of the system. The mutual 
information can be calculated from relatively short data series and from data 
from just one or two particles.

Results:
The typical behaviour of the system with noise can be seen in figure 1, this is 
a system with 3000 particles in a 502 box with R = 0.5 and |v| = 0.1. 

Figure 1b) shows φ and χ as a function of noise for this system but at much 
higher resolution in noise than the pictures in figure 1. χ peaks at the phase 
transition  and φ decreases rapidly with noise although never reaches zero 
showing the effect of the finite size of the system.

Figure 2 shows how MI is calculated for the Vicsek system. Position, in this 
case x, is plotted against angle θ and the occupation probabilities P(x

i
), P(θ

i
), 

and P(x
i
,θ

j
) are calculated. These are then used to calculate entropies H(X), H

(Θ) and H(X,Θ) from which MI is calculated.

The key results are shown in figures 3 and 4, this is a detailed analysis of MI 
as a function of noise. 

➢ MI and χ peak in approximately the same place.
➢ MI has smaller error bars allowing the exact position of the peak to be 
identified more readily than in χ. 
➢ Peak is not in exactly the same place as MI is a measure of the clustering in 
space and velocity, unlike susceptibility which is the variance of the velocity.

In figure 4  a timeseries of position and velocity has been used. Data from 
only 2 particles was used for a time of 10000 steps and a similar peak can be 
found. 

a)

b)

Figure 1:
a) A typical Vicsek system at five different values of η (0, 0.2π, 0.4π, 
0.6π, 0.8π and π).  The system has ρ = 1.2, N = 3000, R = 0.5 and v = 
0.1. Arrows represent the velocity of each particle.

b) The final graph shows the effect of noise on the order parameter 
(circles) and susceptibility (crosses) for a full range of noises. The 
susceptibility peaks at the phase transition where without finite size 
effects the order parameter aught to become zero.

Figure 2: The key steps in calculating MI, a) Plot of x against θ. b) Discretisation of 
a) showing variation of P(x

i
,θ

j
) over parameter space. c) Occupation number for 50 bins 

in θ from which P(θ
i
) is calculated. d) Occupation number for 50 bins in x form which 

P(x
j
) is calculated.

a) b)

c) d)

θ θ

θ

Conclusions:
➢ Mutual information is able to provide a simple method for identifying the phase 
transition in the Vicsek model and therefore shows potential for use in any non-
equilibrium dynamical system.

➢ Error on MI is smaller than that on the susceptibility, it measures the correlation of 
the particles in velocity and position, which is only an approximate measure of where 
the phase transition is.

➢ Careful choices of number of bins must be made to give good accuracy.

➢ A timeseries of measurements from just one particle is enough to make an 
approximation of MI for the whole system. 

➢ Phase transitions can be infered from little data. MI is of use in analysis of data that 
has limited numbers of observations, for example tracer particles in laminar and 
turbulent fluids, GPS tracking of animals and timeseries from satellites.
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Mutual Information:
➢ I(X,Y), measures quantitatively the information shared between two signals (X,Y) 
of almost any type. 
➢ Signals are decomposed into alphabets of possible measurements and each 'letter' 
(x

i
) is assigned a probability P(x

i
).

➢ Signal entropy H(X) is calculated.
➢ Linear combinations of entropies determine the mutual information I for multiple 
signals.
➢ Unit of measurement is bits due to logarithm base two. 

Using Mutual Information (MI):

➢ Probabilities must be calculated from the data.
➢  Many ways to do this, the easiest and fastest is to divide the signal up into bins 
and calculate occupation probabilities for the bins. 
➢ Results using this method on the third window in figure 1 are shown in figure 2.
➢ The number of bins used greatly affects the result, however by varying this over a 
range a stable solution can be found.
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The Vicsek Model:
➢ A complex system with a phase transition.
➢ Simple rules govern motion of many particles but only at short ranges.
➢ Long range, large scale, ordered behaviour for low values of noise 
amplitude η.
➢ Disorder and small scales for high η.
➢ Phase transition at critical noise η

c
 with clusters on all scales and interaction 

over all scales.

The Rules:

Where v is a velocity with direction θ 
and |v| is kept constant, average over R 
is the average angle within a circle of 
radius and δθ is an iid random angle in 
the range -η ≤ δθ ≤ η. 

Measuring Order:

➢ Order is defined for the Vicsek model using an order parameter φ. 

➢ Fluctuations in the system are characterised by the susceptibility χ.

➢ φ → zero and χ → ∞ at the phase transition.

The order parameter is near unity for small η, for large η the system is 
disordered and between there is a phase transition [5] at critical noise η

c
.


