

Quantifying spatial correlation in the turbulent solar wind flow using mutual information: simultaneous in-situ spacecraft observations from WIND and ACE.

R. T. Wicks, S. C. Chapman, R. O. Dendy

Center for Fusion, Space and Astrophysics University of Warwick Coventry UK r.wicks@warwick.ac.uk

Thanks to the WIND and ACE magnetometer and SWE teams

1 Background

- Introduction
- Histograms

2 Mutual Information: A Test Model

- Vicsek Model Rules
- Behaviour
- Order Parameters
- Results
- Limited Data
- 3 Application: The Solar Wind
 - Solar Wind MI
 - Correlation vs. MI

4 Conclusions

Introduction Histograms

Introduction

Developed by Shannon in 1949

Mutual information (MI) is a measure of shared entropy between two signals (X and Y)

$$H(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$H(X) = -\sum_i P(X_i) \log_2(P(X_i))$$

Introduction Histograms

Histograms

Probabilities P(X), $P(\Theta)$ and $P(X, \Theta)$ estimated by frequency of occurrence

Vicsek Model Rules Behaviour Order Parameters Results Limited Data

Vicsek Model Rules

A model for co-orienting self-propelled particles

Particles align within radius ${\it R}$

$$\begin{aligned} \underline{x}_{n+1}^{i} &= \underline{x}_{n}^{i} + \underline{v}_{n}^{i} \,\delta t \\ \underline{v}_{n}^{i} &= v_{0} \left(\cos \theta_{n}^{i} \underline{\hat{x}} + \sin \theta_{n}^{i} \underline{\hat{y}}\right) \\ \theta_{n+1}^{i} &= \langle \theta_{n}^{N_{R}} \rangle + \delta \theta_{n}^{i} \\ \delta \theta_{n}^{i} &\in [-\eta, \eta] \end{aligned}$$

Vicsek et al 1995.

Vicsek Model Rules Behaviour Order Parameters Results Limited Data

Behaviour

Low noise \rightarrow ordered motion

 $\mathsf{High}\ \mathsf{noise} \to \mathsf{disorder}$

Vicsek Model Rules Behaviour Order Parameters Results Limited Data

Order Parameters

Vicsek Model Rules Behaviour Order Parameters **Results** Limited Data

Vicsek Model MI

MI is calculated between position (X, Y) and angle of motion Θ using a histogram method

$$I(X,\Theta) = \sum_{i,j} P(X_i,\Theta_j) \log_2\left(\frac{P(X_i,\Theta_j)}{P(X_i)P(\Theta_j)}\right)$$
$$I(Y,\Theta) = \sum_{i,j} P(Y_i,\Theta_j) \log_2\left(\frac{P(Y_i,\Theta_j)}{P(Y_i)P(\Theta_j)}\right)$$
$$I = \frac{I(X,\Theta) + I(Y,\Theta)}{2}$$

Vicsek Model Rules Behaviour Order Parameters Results Limited Data

Vicsek Model MI

MI and χ are calculated on snapshots of the system

 η_c defined by peak χ

Error on MI much smaller than on χ around peak

Matsuda et al Int. J. Theor. Phys. 1996

Limited Data

Background Mutual Information: A Test Model Application: The Solar Wind Conclusions

Vicsek Model Rules Behaviour Order Parameters Results Limited Data

Real world measurements often measure local or reduced dimensional data from a many degree of freedom system

- Take timeseries data from only 10 particles from 3000
- Divide into 10 smaller sections
- Calculate MI

$$\chi = \frac{1}{N} \left(\langle \phi^2 \rangle - \langle \phi \rangle^2 \right)$$

Vicsek Model Rules Behaviour Order Parameters Results Limited Data

Limited Data

Error on χ is very large

Peak approximately correct for MI

 χ cannot identify η_c

Wicks et al PRE 2007 (in press)

Solar Wind MI Correlation vs. MI

Solar Wind MI

ACE and WIND data

MI calculated with lag Min MI 0.0001 Max MI 1.42

MI gives indication of typical correlation length within solar wind

Solar Wind MI Correlation vs. MI

Correlation vs. MI

MI and correlation agree on time lag and ordering of the data.

MI peaks sharper than correlation.

Linear Correlation identifies the convecting structures. Distinct signature in MI.

- We used a simple model with dynamics and a phase transition to compare susceptibility and MI.
- Mutual information is able to identify the phase transition accurately.
- When knowledge of the system is limited, MI performs better than susceptibility at identifying the phase transition.
- MI demonstrated on 'real world' dataset of multiple spacecraft measurements of the solar wind.
- Both linear correlation and MI detect convecting structures.
- Result from MI and linear correlation are distinct. Reflects presence of both linearly convecting structures and evolving turbulence in the flow.

Wicks et al PRE 2007 (in press)

Linear Correlation

