

The measurement of the apparent phase speed of propagating disturbances

D. Yuan and V. M. Nakariakov Email: Ding.Yuan@warwick.ac.uk Centre for Fusion, Space and Astrophysics Department of Physics, University of Warwick Gibbet Hill Road, Coventry CV4 7AL, UK

See paper Yuan & Nakariakov 2012 A&A (submitted)

1 Introduction

2 Observation

- 3 Data noise
 - AIA image flux noise
 - Uncertainties in the enhance time-distance plot

4 Methods

- Cross-fitting technique
- 2D coupled fitting
- Best similarity match

5 Conclusion

Introduction

D. Yuan and V. M. Nakariakov The measurement of the apparent phase speed of propagating di

AIA observation

Introduction Observation Data noise Methods Conclusion

THE UNIVERSITY OF WARWICK

Introduction Observation Data noise Methods Conclusion

AIA image flux noise Uncertainties in the enhance time-distance plot

AIA image flux noise

$$\begin{split} \sigma_{\text{noise}}^{2}(F) &= \sigma_{\text{photon}}^{2}(F) + \sigma_{\text{readout}}^{2} + \sigma_{\text{digit}}^{2} + \sigma_{\text{compress}}^{2} \\ &+ \sigma_{\text{dark}}^{2} + \sigma_{\text{subtract}}^{2} + \sigma_{\text{spikes}}^{2}(F) \\ &= \sqrt{(1+0.25^{2})\frac{F}{17.7}} + 1.15^{2} + 4 \times 0.5^{2} + (0.0009F)^{2}} \\ &\approx \sqrt{2.3 + 0.06F} \text{ (DN)} \\ \sigma_{\text{photon}}(F) &= \sqrt{F/G_{\lambda}} \\ \sigma_{\text{compress}} &= 0.25\sigma_{\text{photon}} \\ \sigma_{\text{readout}} &= 1.15 \text{ DN} \\ \sigma_{\text{digit}} &= 0.5 \text{ DN} \\ \sigma_{\text{dark}} &= 0.5 \text{ DN} \\ \sigma_{\text{subtract}} &= \sqrt{2 \times 0.5^{2}} = 0.7 \text{ DN} \\ \sigma_{\text{spike}}(F) &= 0.006 \times 0.15F = 0.0009F \end{split}$$

ref.: Yuan & Nakariakov 2012, Aschwanden et al 2001, Boerner et al 2011

AIA image flux noise Uncertainties in the enhance time-distance plot

AIA image flux noise

AIA image flux noise Uncertainties in the enhance time-distance plot

Uncertainties in enhance time-distance plot

- Running difference plot: $\sigma(R(s_m, t_k)) = \sqrt{\sigma^2(C(s_m, t_k)) + \sigma^2(C(s_m, t_{k-9}))}$
 Background-removed time-distance plot:
 - $\sigma(D(s_m, t_k)) = \sigma(C(s_m, t_k))/B(s_m, t_k)$

Cross-fitting technique 2D coupled fitting Best similarity match

CFT method

- For $X(s_m, t_k)$, either $R_1(R_2)$ or $D_1(D_2)$
- At each pixel, $X(s_m, *)$ is fitted with $A_s \cos(\omega_s t + \phi_s) + \delta_s$
- At each image (time), $X(*, t_k)$ is fitted with $A_t \cos(k_t x + \phi_t) + \delta_t$
- $V_p = \omega/k$ is obtained combining the average of the above fits.

THE UNIVERSITY OF

Introduction Observation Data noise Methods Conclusion

Cross-fitting technique 2D coupled fitting Best similarity match

CFT method and its application

Figure: CFT application to R_1 : $\omega = 0.0347 \pm 0.00002 \text{ rad/s}$, $k = 0.738 \pm 0.002 \text{ Mm}^{-1}$, $P = 181.2 \pm 0.1 \text{ s}$, $V_p = 47.0 \pm 0.1 \text{ km/s}$

Cross-fitting technique 2D coupled fitting Best similarity match

DCF method and its application

Figure: DCF application to R_1 : $P = 240.7 \pm 0.7 \text{ s}$, $V_p = 48.8 \pm 0.2 \text{ km/s}$.

THE UNIVERSITY OF WARWICK

BSM methods

Introduction Observation Data noise Methods Conclusion

Cross-fitting technique 2D coupled fitting Best similarity match

- A parametric model image is generated with $M_{V_p,P,\phi}(s_m,t_k) = \sqrt{2}RMS(X(s_m,t_k))\cos(\omega t_k ks_m + \phi).$
- The similarity is quantified as

$$L_{p}(M,R) = \left(\sum_{m=1}^{m=N_{s}} \sum_{k=1}^{k=N_{t}} |M(s_{m},t_{k}) - X(s_{m},t_{k})|^{2}\right)^{1/2}.$$

- For each combination of $V_p \in [20, 120] \text{ km/s}$, $P \in [150, 200] \text{ s}$ and $\phi \in [0, 2\pi]$, $L_p(M, R)$ is calcualted.
- Locating L^{min}_p in the parametric space, and selecting a set of 1% above minimum, We are able to get the mean values and their uncertainies.

Cross-fitting technique 2D coupled fitting Best similarity match

BSM method and its application

Figure: BSM application to R_1 , $P = 180.0 \pm 1.8 \text{ s}$, $V_p = 47.0 \pm 2.6 \text{ km/s}$.

Cross-fitting technique 2D coupled fitting Best similarity match

BSM method and its application to regularised image

Figure: BSM application to R_1^{σ} , $P = 180.0 \pm 1.0 \text{ s}$, $V_p = 48.0 \pm 1.3 \text{ km/s}$.

Cross-fitting technique 2D coupled fitting Best similarity match

Comparison of the measurements

Та	ble	2: A	comparison	of the	measured	results of	CFT,	DCF	and	BSM	methods
----	-----	------	------------	--------	----------	------------	------	-----	-----	-----	---------

		CFT	DCF	BSM
R ₁	P (s) Vn (km/s)	181.2 ± 0.1 47.0 ± 0.1	240.7 ± 0.7 48.8 ± 0.2	$\frac{180.0 \pm 1.8}{47.0 \pm 2.6}$
R_2	P(s)	179.7 ± 0.2	177.2 ± 0.9	178.0 ± 2.0
R_1^{σ}	P(s)	···		180.0 ± 1.0
Ro	P(s)			$\frac{48.0 \pm 1.3}{180.0 \pm 1.0}$
<u>2</u>	$V_p (km/s)$ P (s)	 180.0 <u>+</u> 0.1	 198.9 <u>+</u> 0.7	50.0 ± 2.6 180.0 ± 1.0
<i>D</i> ₁	V_p (km/s) P (s)	45.8 <u>+</u> 0.2 180 0 + 0 2	44.5 <u>+</u> 0.2 250 5 + 2 2	47.0 ± 1.4 178.0 ± 1.0
D_2	$V_p \text{ km/s}$	48.6 ± 0.4	51.4 ± 0.5	49.0 ± 2.8
D_1^{σ}	$V_p \text{ km/s}$			$\frac{180.0 \pm 1.0}{48.0 \pm 1.3}$
D_2^{σ}	P(s) $V_p(km/s)$			180.0 <u>+</u> 0.9 50.0 <u>+</u> 2.3

Cross-fitting technique 2D coupled fitting Best similarity match

Comparison of the measurement

Figure: A Comparison of the measurement CFT, DCF, BSM and its application to regularised images $BSM(\sigma)$.

Cross-fitting technique 2D coupled fitting Best similarity match

Comparison of the measurement

Figure: The meaurement of R_1 and D_1 as functions of lag time and detrending time respectively (left panels), and those of R_2 and D_2 (right panels). The measurements of CFT, BSM and BSM (σ) are plotted with $*, \diamond$ and \Box respectively.

Conclusion

- CFT, DCF and BSM are valid and robust methods to meaurement the phase speed of propagating disturbances.
- CFT, DCF and BSM are in general more robust in measuring background removed samples than running differences.
- Samples with longer valid detection lengh are more suitable for the above methods. They sustain more variability of lag time and detrending time.