Notes on Generalized Transforms- Sandra Chapman (MPAGS: Time series analysis)

Some Generalizations of Fourier Theory
see also Dudok de Wit review

Higher Order Spectra (summary)

Consider the nonlinear system:

du(x,1)

3 = f(u(x,1))
X
decompose —
du(x,t) B
. —Jg(Tl)u(x,t 7,)dT,

+” 8(t,, 7, u(x,t —7)u(x,t — 7,)dt,dt,

+{[] 8@t uCer = 7 uCxr = 7)ulx.r - 7)) dr, drdr,

+...
Taking the DFT we obtain the Volterra series:

du
P _
= Fpup + Zrkluku16k+l,p + 2 Fklmukulum5k+l+m,p + ..
k.

X kdm

with
u,=u(x,0,)

The leading term is a linear (cf Fourier) decomposition. The rest are mode coupling. Ensemble
average over x and consider a homogeneous medium:

setting ai =0
X

Fp<u;up>+ 2 Fkl<uku,uz+,>+ z Fklm<uku,umu,f+l+m>+..:0

k+l=p k+l+m=p

Now recall convolution:
N-1
g xh = Zguhkfu
u=0

The DFT is G, H,, where G, is the DFT of g, etc.,

7
N-1

This relates to cross correlation: C_ = Z g.h, . DFTis G H,

k=0

N—-1
auto correlation: R = Zxkxk .. DFTis S,S, (thepower spectrum)
k=0
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generalise these to:

bispectrum B, = S5,8,5:.,
trispectrum Tiim = SiSiSuSkitim

There are normalized versions, eg:

2
B |

bicoherence = —_—— =
1SS 1Sk |

kil

One can obtain averaged bispectra in the same way as averaged power spectra — average over M
consecutive intervals.

N-1
Alternatively, use the 2nd order autocorrelation: M = Zxkxk F
k=0

The bispectrum is the twice applied DFT on M (cf convolution theorem to prove).

Physical meaning (see also Dudok de Wit review)

Recall frequency f, = % =w,
Thus: S, — S(w, ), S, = S(w,), Sy, = S(w, +w,)

This tests for coherence between beating oscillations

where w,; = w; +w;, for strongest mode we see strong bicoherence.
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For wave- wave coupling we need to satisfy physical constraints in both space and time:

energy conservation

Wp + Wm = Wptm

momentum conservation

Principal domain of bicoherence- due to symmetries:
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Fig. 3. Principal domain of the bicoherence. The Nyquist theorem restricts the display
to the area enclosed by a dashed line. For the autobicoherence, the principal domain
is I, for the cross-bicoherence it is I and II.
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Example- water waves: (courtesy T. Dudok De Wit)

wave amplitude [cm]
(=]

time [sec]

Real part and imaginary part of bicoherence
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asymmetry wrt time reversal- imaginary bispectra
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up- down asymmetry- real bispectra

so wave is not steepening- simply have a ‘wobble’ on amplitude.

Linear Time Invariant (LTI) Filters

A way to generalize the Fourier world to other transforms.

So far — everything flowed from the idea:

x(t> = i S &t £ :?

m=—0o0

T/2
with S, :l f x(t)e’z””ﬁtdt

-T/2

Discrete version:

1 N-1 . m
S emek/N —
T NA ,,Z " 2 NAt
N—-1
S =At)» xe N t, = kAt
k=0
and orthogonality property of the Fourier kernel ® = ¢*™"
A framework to consider other @ -
Write filter as: L{x(¢)]= y(¢)
where L is a linear operator, with the properties:
1. scale preserving Llax]=aL[x]
2. distributative (superposition) Lix, +x,]=L[x ]+ L[x,]
3. time invariant Lix(t)]=y(¢t)
= Lix(t+7)]=y(t+71)
N N
Then in general: L Zlapxp(t) = losz[xp (t)]
p= p=

Now consider for input x to the filter, the Fourier kernel:

P, (t)=e"" [ =const
vy =L[®]=y,(1)
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then: y, (t+7)=L[®,(t+7)]=L[™ P, (t)]=€"""y, (1)
This is just the "shift theorem" from Fourier theory.

Nowlett =0.
y(1)=e""y,(0)

true for any 7 so let 7 ...t
yr(t)=e"y,(0)

so y,(0) is a constant — there is one value for each f.

We can consider a spectrum of values of y, (0)
Yy (0)= G, = Afeief
Then
()=, (1) = 1] 1)) = G,
generally:
®, — eigenvalues

' of L
G, — eigenvectors

We can think of any transform in this way.

We need to identify an appropriate @, (t) . Two methods:

1. Choose @, () as basis on which we expand, ie: y(t) = ny<t) = ZGJ,(I)/.(Z‘)
® . may be orthogonal — chosen for "appropriate" propertigs. '
This is equivalent to the transform: y(t) = jG(f)@(f,t)df

again, ®( f,1)= &> for the Fourier transform.

2. Perform an SVD (single value decomposition, or principle component analysis) on
L, so that the @, are generated by the data (beyond the scope of this course).
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Application of LTI filters — coloured noises

Consider some x(t)= i S et

m=—0o0

The discrete version of this is

1 N-1

o E 27rzmk/N f _ m

k - m
NAt,=

We now have:

oo

y(t)=L[x(t)]= > G,S,&

1 N-1
y o G S 27mimk/ N
CONAt,
Now for a stochastic process we have
1 N-1 .
x = D emek/N
Y ONAt Z:O "

where
D =S

m m m >

¢, are random iid processes (these are stationary)
then as above

yr(t)=Gpx (1)
or Vim =G

m

xk,m

2mimk/ N

where x;, = §,e

m

The G, are just constants.

Then for process x, stochastic, there will be a process y, also stochastic, with spectral components
GDy.

The x,, y, should share the statistical properties .
More formally, since the R-S integral gives, for stochastic dz, (see notes on stationarity)

W)= [, .87 ()

then
o(1)= [ 261z, (1)
_ fl/z eZm'ﬁdZ (f
Jon Y
1

ie <|dzy (f)|2 > =G’ (f)<|dzx () > so this filter generates "coloured" noises ifG ~ —

8



