
Notes on Generalized Transforms- Sandra Chapman (MPAGS: Time series analysis) 

 1 

Some Generalizations of Fourier Theory  
see also Dudok de Wit review 
 
Higher Order Spectra (summary) 
 
Consider the nonlinear system: 
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Taking the DFT we obtain the Volterra series: 
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The leading term is a linear (cf Fourier) decomposition. The rest are mode coupling. Ensemble 
average over x  and consider a homogeneous medium: 
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Now recall convolution: 
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The DFT is 
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This relates to cross correlation:  
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generalise these to: 
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There are normalized versions, eg: 
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One can obtain averaged bispectra in the same way as averaged power spectra – average over M 
consecutive intervals. 
 

Alternatively, use the 2nd order autocorrelation: 
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The bispectrum is the twice applied DFT on M (cf convolution theorem to prove). 
 
Physical meaning (see also Dudok de Wit review) 
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This tests for coherence between beating oscillations 
 

 
 
 where ,k l k l

! ! != + , for strongest mode we see strong bicoherence. 
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For wave- wave coupling we need to satisfy physical constraints in both space and time: 
 

 
 
 
 
Principal domain of bicoherence- due to symmetries:  
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Example- water waves: (courtesy T. Dudok De Wit) 
 

 
 
Real part and imaginary part of bicoherence 
 

 
 
 

 
asymmetry wrt time reversal- imaginary bispectra 
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up- down asymmetry- real bispectra 
 
so wave is not steepening- simply have a ‘wobble’ on amplitude. 
 
 
Linear Time Invariant (LTI) Filters 
 
A way to generalize the Fourier world to other transforms. 
 
So far – everything flowed from the idea: 
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Discrete version: 
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and orthogonality property of the Fourier kernel 2 ifte !! =  
 
A framework to consider other ! - 
 
Write filter as: ( )[ ] ( )L x t y t=  
 
where L is a linear operator, with the properties: 
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Now consider for input x to the filter, the Fourier kernel: 
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This is just the "shift theorem" from Fourier theory. 
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We can consider a spectrum of values of ( )0fy  
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We can think of any transform in this way. 
 
We need to identify an appropriate 
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2. Perform an SVD (single value decomposition, or principle component analysis) on 
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Application of LTI filters – coloured noises 
 

Consider some  
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Now for a stochastic process we have 

    

x
k

=
1

N!t
D

m
e

2!imk / N

m=0

N"1

#  

where 

    
D

m
= S

m
e

i!
m D

m
,!

m
 are random iid  processes (these are stationary) 

then as above 
( ) ( )f f fy t G x t=  

or   , ,k m m k my G x=  
where 2 /

,
imk N

k m m
x S e

!
=  

 
The fG  are just constants. 
Then for process 

k
x  stochastic, there will be a process ky  also stochastic, with spectral components 

f fG D . 
 
The ,k kx y  should share the statistical properties . 
 
More formally, since the R-S integral gives, for stochastic 

x
dz  (see notes on stationarity) 
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