Some Generalizations of Fourier Theory

see also Dudok de Wit review

Higher Order Spectra (summary)

Consider the nonlinear system:

$$
\begin{aligned}
& \frac{\partial u(x, t)}{\partial x}=f(u(x, t)) \\
& \text { decompose- } \\
& \frac{\partial u(x, t)}{\partial x}=\int g\left(\tau_{1}\right) u\left(x, t-\tau_{1}\right) d \tau_{1} \\
& +\iint g\left(\tau_{1}, \tau_{2}\right) u\left(x, t-\tau_{1}\right) u\left(x, t-\tau_{2}\right) d \tau_{1} d \tau_{2} \\
& +\iiint g\left(\tau_{1}, \tau_{2}, \tau_{3}\right) u\left(x, t-\tau_{1}\right) u\left(x, t-\tau_{2}\right) u\left(x, t-\tau_{3}\right) d \tau_{1} d \tau_{2} d \tau_{3} \\
& +\ldots
\end{aligned}
$$

Taking the DFT we obtain the Volterra series:

$$
\begin{aligned}
& \frac{\partial u_{p}}{\partial x}=\Gamma_{p} u_{p}+\sum_{k, l} \Gamma_{k l} u_{k} u_{l} \delta_{k+l, p}+\sum_{k, l, m} \Gamma_{k l m} u_{k} u_{l} u_{m} \delta_{k+l+m, p}+\ldots \\
& \text { with } \\
& u_{p}=u\left(x, \omega_{p}\right)
\end{aligned}
$$

The leading term is a linear (cf Fourier) decomposition. The rest are mode coupling. Ensemble average over x and consider a homogeneous medium:

$$
\begin{aligned}
& \text { setting } \frac{\partial}{\partial x}=0 \\
& \Gamma_{p}\left\langle u_{p}^{*} u_{p}\right\rangle+\sum_{k+l=p} \Gamma_{k l}\left\langle u_{k} u_{l} u_{k+l}^{*}\right\rangle+\sum_{k+l+m=p} \Gamma_{k l m}\left\langle u_{k} u_{l} u_{m} u_{k+l+m}^{*}\right\rangle+. .=0
\end{aligned}
$$

Now recall convolution:

$$
g_{k} * h_{k}=\sum_{u=0}^{N-1} g_{u} h_{k-u}
$$

The DFT is $G_{m} H_{m}$ where G_{m} is the DFT of g_{k} etc.,
This relates to cross correlation: $C_{\tau}=\sum_{k=0}^{N-1} g_{k} h_{k \nmid \tau} \quad$ DFT is $G_{m}^{*} H_{m}$
auto correlation: $\quad R_{\tau}=\sum_{k=0}^{N-1} x_{k} x_{k+\tau} \quad$ DFT is $S_{m}^{*} S_{m}$ (the power spectrum)
generalise these to:
bispectrum

$$
B_{k l}=S_{k} S_{l} S_{k+l}^{*}
$$

trispectrum

$$
T_{k l m}=S_{k} S_{l} S_{m} S_{k+l+m}^{*}
$$

There are normalized versions, eg:
bicoherence $=\quad \frac{\left|B_{k l}\right|^{2}}{\left|S_{k} S_{l}\right|^{2}\left|S_{k+l}\right|^{2}}=b_{k l}$
One can obtain averaged bispectra in the same way as averaged power spectra - average over M consecutive intervals.

Alternatively, use the 2nd order autocorrelation: $M_{\tau_{1} \tau_{2}}=\sum_{k=0}^{N-1} x_{k} x_{k+\tau_{1}} x_{k+\tau_{2}}$
The bispectrum is the twice applied DFT on M (cf convolution theorem to prove).

Physical meaning (see also Dudok de Wit review)

Recall frequency $f_{m}=\frac{m}{N \Delta t} \equiv \omega_{m}$
Thus : $S_{k} \rightarrow S\left(\omega_{k}\right), S_{l} \rightarrow S\left(\omega_{l}\right), S_{k+l} \rightarrow S\left(\omega_{k}+\omega_{l}\right)$

This tests for coherence between beating oscillations

where $\omega_{k, l}=\omega_{k}+\omega_{l}$, for strongest mode we see strong bicoherence.

For wave- wave coupling we need to satisfy physical constraints in both space and time:

Principal domain of bicoherence- due to symmetries:

Fig. 3. Principal domain of the bicoherence. The Nyquist theorem restricts the display to the area enclosed by a dashed line. For the autobicoherence, the principal domain is I, for the cross-bicoherence it is I and II.

Example- water waves: (courtesy T. Dudok De Wit)

Real part and imaginary part of bicoherence

asymmetry wrt time reversal- imaginary bispectra

up- down asymmetry- real bispectra so wave is not steepening- simply have a 'wobble' on amplitude.

Linear Time Invariant (LTI) Filters

A way to generalize the Fourier world to other transforms.
So far - everything flowed from the idea:
with

$$
\begin{aligned}
& x(t)=\sum_{m=-\infty}^{\infty} S_{m} e^{2 \pi i i_{m} t} \quad f_{m}=\frac{m}{T} \\
& S_{m}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-2 \pi i i_{m} t} d t
\end{aligned}
$$

Discrete version:

$$
\begin{array}{ll}
x_{k}=\frac{1}{N \Delta t} \sum_{m=0}^{N-1} S_{m} e^{2 \pi i m k / N} & f_{m}=\frac{m}{N \Delta t} \\
S_{m}=\Delta t \sum_{k=0}^{N-1} x_{k} e^{-2 \pi i k m / N} & t_{k}=k \Delta t
\end{array}
$$

and orthogonality property of the Fourier kernel $\Phi=e^{2 \pi i f t}$
A framework to consider other Φ -
Write filter as: $L[x(t)]=y(t)$
where L is a linear operator, with the properties:

1. scale preserving

$$
\begin{array}{ll}
& L[a x]=a L[x] \\
& L\left[x_{1}+x_{2}\right]=L\left[x_{1}\right]+L[\\
& L[x(t)]=y(t) \\
\Rightarrow \quad & L[x(t+\tau)]=y(t+\tau)
\end{array}
$$

2. distributative (superposition) $\quad L\left[x_{1}+x_{2}\right]=L\left[x_{1}\right]+L\left[x_{2}\right]$
3. time invariant $L[x(t)]=y(t)$

Then in general: $\quad L\left[\sum_{p=1}^{N} \alpha_{p} x_{p}(t)\right]=\sum_{p=1}^{N} \alpha_{p} L\left[x_{p}(t)\right]$
Now consider for input x to the filter, the Fourier kernel:

$$
\begin{aligned}
& \Phi_{f}(t)=e^{2 \pi i f t} \quad f=\mathrm{const} \\
& y_{f}=L\left[\Phi_{f}\right]=y_{f}(t)
\end{aligned}
$$

then: $y_{f}(t+\tau)=L\left[\Phi_{f}(t+\tau)\right]=L\left[e^{2 \pi i f \tau} \Phi_{f}(t)\right]=e^{2 \pi i f \tau} y_{f}(t)$
This is just the "shift theorem" from Fourier theory.
Now let $t=0$.

$$
y_{f}(\tau)=e^{2 \pi i f \tau} y_{f}(0)
$$

true for any τ so let $\tau \ldots t$

$$
y_{f}(t)=e^{2 \pi i f t} y_{f}(0)
$$

so $y_{f}(0)$ is a constant - there is one value for each f.
We can consider a spectrum of values of $y_{f}(0)$

$$
y_{f}(0)=G_{f}=A_{f} e^{i \theta_{f}}
$$

Then

$$
y_{f}(t)=G_{f} \cdot \Phi_{f}(t)=L\left[\Phi_{f}(t)\right]=G_{f} e^{2 \pi i f}
$$

generally:

$$
\left.\begin{array}{c}
\Phi_{f}-\text { eigenvalues } \\
G_{f}-\text { eigenvectors }
\end{array}\right\} \text { of } L
$$

We can think of any transform in this way.
We need to identify an appropriate $\Phi_{f}(t)$. Two methods:

1. Choose $\Phi_{f}(t)$ as basis on which we expand, ie: $y(t)=\sum_{f} y_{f}(t)=\sum_{f} G_{f} \Phi_{f}(t)$ Φ_{f} may be orthogonal - chosen for "appropriate" properties.

This is equivalent to the transform: $\quad y(t)=\int_{-\infty}^{\infty} G(f) \Phi(f, t) d f$ again, $\Phi(f, t)=e^{2 \pi i f t}$ for the Fourier transform.
2. Perform an SVD (single value decomposition, or principle component analysis) on L, so that the Φ_{f} are generated by the data (beyond the scope of this course).

Application of LTI filters - coloured noises

Consider some

$$
x(t)=\sum_{m=-\infty}^{\infty} S_{m} e^{2 \pi i f_{m} t}
$$

The discrete version of this is

$$
x_{k}=\frac{1}{N \Delta t} \sum_{m=0}^{N-1} S_{m} e^{2 \pi i m k / N} \quad f_{m}=\frac{m}{N \Delta t}
$$

We now have:

$$
\begin{aligned}
y(t) & =L[x(t)]=\sum_{m=-\infty}^{\infty} G_{m} S_{m} e^{2 \pi i f_{m} t} \\
y_{k} & =\frac{1}{N \Delta t} \sum_{m=0}^{N-1} G_{m} S_{m} e^{2 \pi i m k / N} .
\end{aligned}
$$

Now for a stochastic process we have

$$
x_{k}=\frac{1}{N \Delta t} \sum_{m=0}^{N-1} D_{m} e^{2 \pi i m k / N}
$$

where

$$
D_{m}=S_{m} e^{i \phi_{m}} \quad D_{m}, \phi_{m} \text { are random iid processes (these are stationary) }
$$

then as above
or

$$
\begin{aligned}
& y_{f}(t)=G_{f} x_{f}(t) \\
& y_{k, m}=G_{m} x_{k, m} \\
& \quad \text { where } x_{k, m}=S_{m} e^{2 \pi i m k / N}
\end{aligned}
$$

The G_{f} are just constants.
Then for process x_{k} stochastic, there will be a process y_{k} also stochastic, with spectral components $G_{f} D_{f}$.

The x_{k}, y_{k} should share the statistical properties .

More formally, since the R-S integral gives, for stochastic $d z_{x}$ (see notes on stationarity)

$$
x(t)=\int_{-1 / 2}^{1 / 2} e^{2 \pi i f t} d z_{x}(f)
$$

then

$$
\begin{aligned}
y(t) & =\int_{-1 / 2}^{1 / 2} e^{2 \pi i f t} G(f) d z_{x}(f) \\
& =\int_{-1 / 2}^{1 / 2} e^{2 \pi i f t} d z_{y}(f)
\end{aligned}
$$

ie

$$
\left.\left.\left.\langle | d z_{y}(f)\right|^{2}\right\rangle=\left.G^{2}(f)\langle | d z_{x}(f)\right|^{2}\right\rangle \quad \text { so this filter generates "coloured" noises if } G \sim \frac{1}{f^{\beta}}
$$

