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Stationarity and stochastic processes 
 
Stationarity 
 
Implies that different realisations/samples are equivalent, useful since it follows that: 
 
⇒ many realisations can be drawn in sequence from a single time series 
 
- for stochastic processes this equivalence is statistical 
- for deterministic processes this equivalence is repetition under time shift (periodicity)  

⇒ implies time independence of power spectrum 
 
a) Strong/strict stationarity 

for a sequence 
k
x  at two times 1 2,k k  define 

 
( ) [ ]

1 2
, 1 2 1 1 2 2, ,

k k k k
F a a P x a x a= ! !  

 
P is just the joint CDF – expresses the correlation structure of 
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Strong stationarity is then: 
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- completely stationary under time shift !  
 
- not a practical definition! 

 
b) Weak/2nd order stationarity 
 all the joint moments of 

k
x  up to order 2 are same as that of 
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 ie: 2,
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x x  are independent of ! . 

 
 Alternatively, a stationarity test is provided by the covariance: 
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 This is only a function of ! , not position in sequence.  
 

This is usually normalized to the autocovariance :     
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Spectral representation of stochastic processes (outline) 
 
Issues are (i) defining an integral over a stochastic process and (ii) convergence of the integral for 
random walks (sums of stochastic steps) which grow without bound (outline not formal proof!). 
 
Consider a finite interval of a discrete stochastic process 

k
x . 

recall DFT 
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Write instead for our stochastic process 
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This is a 'random phase' model for the stochastic process 

k
x . The 

 
S

m
are real constants and the 

m
! is 

a stochastic, iid random variable. 
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It follows that the statistical properties of the 
m
D  are that of the 
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This follows since 
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We can think of the 

m
D  as a stationary stochastic process.  We can build a random walk (which is 

not stationary) from stationary stochastic steps ie: 
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which defines stochastic increment ( ) ( ) ( )dz f z f df z f= + ! ,  
then ( )m mdz f D= , this is the "power" in mf , so in an appropriate continuous limit is equivalent to 
z( f )df . The continuous limit is via the definition of a Riemann-Stieltjes integral. 
 
Then the spectral representation theorem is: 
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where dz  is stochastic – this is a Riemann-Stieltjes integral. 
 
All the usual results of Fourier theory follow (since we have an expansion in an orthogonal set).  In 
particular, we are interested in scaling – random walks (coloured noises) with power law power 
spectra. 
 


