Notes on Stationarity- Sandra Chapman (MPAGS: Time series analysis)

Stationarity and stochastic processes

Stationarity

Implies that different realisations/samples are equivalent, useful since it follows that:
= many realisations can be drawn in sequence from a single time series

- for stochastic processes this equivalence is statistical

- for deterministic processes this equivalence is repetition under time shift (periodicity)

= implies time independence of power spectrum

a) Strong/strict stationarity
for a sequence x, attwo times k,, k, define

F}q,kz (a,a,)=Plx, <a,x, <a]

P is just the joint CDF — expresses the correlation structure of x,

Strong stationarity is then:

Fk,,kz...k,v <a1, a,...ay ) = Ec]+7,k2+r"'<al"'aN )
- completely stationary under time shift 7
- not a practical definition!

b) Weak/2nd order stationarity

all the joint moments of x, up to order 2 are same as that of x, _

ie: (x.),(x{) are independent of 7.

Alternatively, a stationarity test is provided by the covariance:
N

cov(x.y) = 32 2(x ~%)(3 = 7) = (5, ~F)(3 - 7)),

Now consider cov(xk1 s X, ) where £, 1s just k, shifted by 7
= cov(xy, X,y ) = cov(xy, X, )

This is only a function of 7, not position in sequence.

cov(xo, X, )

This is usually normalized to the autocovariance :
cov ( X5 X, )
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Spectral representation of stochastic processes (outline)

Issues are (i) defining an integral over a stochastic process and (ii) convergence of the integral for
random walks (sums of stochastic steps) which grow without bound (outline not formal proof?).

Consider a finite interval of a discrete stochastic process x;, .
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Write instead for our stochastic process
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This is a 'random phase' model for the stochastic process x,. The S, are real constants and the ¢,,1s
a stochastic, iid random variable.

o 1 X , 5
Write thisas x, =——)» D ™'V where D, =S,

NAt‘ = "
It follows that the statistical properties of the D,, are that of the ¢,,, ie:

if (¢,)=0 (D,)=0and (D;)=S.
This follows since D, D, = S> for each m, and the ¢,, are uncorrelated.

We can think of the D,, as a stationary stochastic process. We can build a random walk (which is
not stationary) from stationary stochastic steps ie:

z2(f)= ZD fo < f< f

which defines stochastic increment dz( f )= z(f +df )—z(f),
then dz( f,,) = D, , this is the "power" in f,,, so in an appropriate continuous limit is equivalent to
zZ(f)df . The continuous limit is via the definition of a Riemann-Stieltjes integral.

Then the spectral representation theorem is:
1

1 ) 1 N-1
x(t)= [2e*" dz formally equivalent to x, = ——» D ™'k
(1)= [ (1) ommatty cq =D
where dz is stochastic — this is a Riemann-Stieltjes integral.

All the usual results of Fourier theory follow (since we have an expansion in an orthogonal set). In
particular, we are interested in scaling — random walks (coloured noises) with power law power
spectra.



