
Scaling, structure functions and all 

that…

S. C. Chapman

Notes for MPAGS MM1 Time series Analysis 

•SCALING: Some generic concepts: universality, turbulence, fractals 

and multifractals, stochastic models

•RESCALING PDFS AND STRUCTURE FUNCTIONS

•FINITE LENGTH TIMESERIES, UNCERTAINTIES, EXTREMES-’real 

data’ examples 



Scaling

Some ideas and examples



Scaling and universality-Branches 

on a self-similar tree
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Each branch grows 3 new branches, 1/5 as long as itself..



Segregation/coarsening- a 

selfsimilar dynamics

Courtesy P. Sethna

Rules: each square changes to be like the majority of its neighbours

Coarsening, segregation, selfsimilarity



Solar corona over the solar cycle

SOHO-EIT image of the corona 

at solar minimum and solar maximum

- Magnetic field structure

SOHO- LASCO image 

of the outer corona 

near solar maximum

The solar wind as a turbulence laboratory (will use as an example)



Solar wind at 1AU power spectra-

suggests inertial range of (anisotropic MHD) turbulence. 

Multifractal scaling in velocity and magnetic field 

components.. AND something else in B magnitude..

Goldstein and Roberts, POP 1999, See also Tu and Marsch, SSR, 1995



Quantifying scaling I

‘Fractal’ – self- affine scaling

Uncertainties, finite size effects

Link to SDE models (self- affine 
processes)



A regular fractal

Koch snowflake

line length (4 / 3)nl



A random fractal

16 particles- Brownian 

random walk
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Consider a timeseries ( ) sampled with precision . We construct a  timeseries 

( , ) ( , ) ( ) ( ) so 

( ) ( ) ( , ) and ( , ) is a random variable
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normalize such that
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 is a random variable, so we have the same PDF under transformation:
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the  are not Gaussian iid. We need to find 

consider CLT case.. 
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Data Renormalization



Self –affine (‘fractal’) scaling in timeseries

Example-Brownian walk

Fluctuations:

Probability of wandering 

different distances in a 

given time (Gaussian)

( , ) ( ) ( )x t x t x t    



Rescale
The height of the peaks is 

power law- a single factor 

rescales them

The same factor 

rescales all the curves-
=1/2

Self-similarity



Procedure to test for self affine scaling in a timeseries- Brownian 

walk (simple fractal)

1) difference the timeseries ( ) on timescale  to obtain ( , ) ( ) ( )

2) ( , ) are self- similar (fractal) -  same function under single parameter rescaling

3) rescaling parameter comes from 

x t y t x t x t

P y if

  



  

1the data eg ( ) ~ ,  here
2

4) so moments of the PDF: ( , ) ~p p

t
y t





   

 





example- ,B2 in the solar wind

slow sw shown, , B2

selfsimilar scaling up to ~few hrs

WIND 46/98s 

Key Parameters ’95-’98

Approx 10^6 samples

Verified with ACE 

Hnat, SCC et al GRL,2002, POP 2004 

  



Diffusion- random walk
Brownian random walk

 

 is stochastic iid

dx

dt
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diffusion equation
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Renormalization-scaling system looks the same under
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Fokker- Planck models
(see also fractional kinetics and Lévy flights)

Langevin equation
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 stochastic iid 
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Fokker- Planck equation
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A not so simple fractal timeseries- financial markets

• Mantegna and Stanley- Nature,1995

• S+P500 index

• ‘heavy tailed’ distributions

• Brownian walk in log(price) is the 

basis of Black Scholes (FP model for 

price dynamics)

• Non- Gaussian PDF, fractal scaling-

Fractional Kinetics or non- linear FP 



The efficient market

dS
dX dt

S
  

Efficient- arbitrageurs constantly trade to exploit differences in price

As a consequence any price differences are very short lived

The market is a ‘fair game’

Implies

Fluctuations are uncorrelated

Fluctuations aggregate many (N) trades, thus an equilibrium, large N

model implies Gaussian statistics (CLT)

Change in price S, dS in t-t+dt governed by:



Black-Scholes and all that..

2

Anticipate a Diffusion equation for  -since 

provided we have the self- similar scaling for

 the stochastic variable 
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we can write an equation for price evolution
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 ( , )

can then write a Taylor expansion for any ( ) using I.

This leads to the B-S SDE for the price of options...

Riskless portfolio ( ) ,  ( ) is an option on stock 

key phenomenology is th
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scat a of ling



Nonlinear F-P model for self similar 

fluctuations- asymptotic result

(alternative- fractional kinetics)

 

  

If the PDF of fluctuations ( ) ( ) on timescale  is :
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1 1/ 2 1/h ,  we solve the Fokker- Planck for 

This corresponds to a : ( ) ( ) ( )

and we can obtain ,  via the Fokk

Langevin e

er- Planck coefficients

see Hnat, SCC et al. Phys.

quation
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. E (2003), Chapman et al, NPG (2005)



Fokker Planck fit to PDFs

Procedure:

1) Measure exponent

2) Solve FP for PDF functional form

3) Check this fits the observed PDF



Turbulence

a la Komogorov, intermittency

beyond power spectra...

(NB we will introduce intermittency in the context of 

turbulence, but methods are quite general)



Turbulence

Dynamics are complex

Statistics are simple

Assume:

Isotropic

Stationary

Homogeneous



Example- strong multifractal

solar wind v,B

moments 
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( ) quadratic in 
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Intermittent turbulence-topology
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Consider simple finite sized scaling system, scale lengths  
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r

velocity difference across an eddy ( ) ( )

eddy time ( ) and energy transfer rate 

have  as the eddy t

Intermittency- 

as a deviation from a space filling cascade (Kolmogorov turbulence)
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( )vations take  :
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Quantifying scaling II

Multifractal scaling and structure 
functions



Turbulence and scaling

r

Reproducible, predict

structures on many le
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single spacecraft- time interval  a proxy for space

to focus on any particular scale  take a difference:

( ,

e in a  sense.

)

statistica

r

y l

l

r x



 ( ) ( )

look at the statistics of ( , )
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different scales 
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DNS of 2D compressible MHD turbulence

Merrifield, SCC et al, POP 2006,2007



Quantifying scaling

r
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structures on many length/timescales. 

look at (time-space) differences:
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UT finite system/  data!

p pr l y P y l dy



 



Theory-data comparisons- examples

2 and 3D MHD simulations

Muller & Biskamp PRL 2000

Fluid experiments,

Anselmet et al, PSS, 2001

KO41

How large can we take p? See eg Dudok De Wit, PRE, 2004



A nice quiet fast interval of solar wind- CLUSTER high 

cadence B field spanning IR and dissipation range

CLUSTER STAFF and FGM shown overlaid.

Kiyani, SCC et al PRL  2009



CLUSTER STAFF and FGM shown overlaid.

Kiyani, SCC et al PRL 2009,

Dissipation range- fractal 

( )| ( ) ( ) | ~ ,  plot log( ) vz. log( ) to obtain ( )p p

p pS x t x t S p      

Inertial range- multifractal



Quantifying scaling III

Uncertainties, extreme events, finite size 
effects

Will discuss structure functions but remarks 
relate to other measures of scaling



Finite sample effect- error on exponent ζ(2) as a function of sample size N

Time stationary 

Brownian walk

Time stationary 

P-model

Non- stationary 

Brownian walk

Kiyani, SCC et al, PRE (2009)

Errors decrease in

power law with N!
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) is quadratic in p (multifractal)- weaker estimate



Structure functions- sensitive to undersampling of largest events 

(example -  in slow sw)
( )( , ) ( ) ( ) test for scaling - ( ) | ( , ) |  m m

my t x t x t S y t         

remove y >10()

2 sources  of uncertainty in exponent 

1) Fitting error of lines (error bar estimates)

2) Outliers- Shown: removed < 1% of the data 

ACE  98-01 (4years)-106 samples. 

Threshold 450 km/sec.

fractal or multifractal? 2

( ) ~

 ( ) ~ ...

fractal (self- affine) 

multifractal

p p

p p p

 

   

cf Fogedby et al PRE ‘anomalous diffusion in a box’



Chapman et al, NPG, 2005,Kiyani et al PRE, 2006 
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sxPDF re xscaling , sP P    

Outliers and a more precise test for fractality-

example-Lévy flight (‘fractal’)
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so 2 is Gaussian distributed, Brownian walk
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sxPDF re xscaling , sP P    

Chapman et al, NPG, 2005,Kiyani, SCC  et al PRE (2006) 

A more precise test for 

fractality-

outliers and convergence: 

example-Lèvy flight (‘fractal’)



Distinguishing self- affinity (fractality) and multifractality

P-model -multifractalLévy flight -fractal



Fractal signature ‘embedded’ in (multifractal) solar wind 

inertial range turbulence-coincident with complex 

coronal magnetic topology

Solar cycle variation WIND Inertial Range- |B|2 

Kiyani et al, PRL 2007, Hnat et al, GRL 2007

2000 - Solar max 

fractal

1996 - Solar min

multifractal



Left: B² fluctuation PDF solar max and solar min

Right: solar max, FP and Lévy fit

WIND 1996 min (◊), 2000 max (◦), ACE 2000 max (□)

Hnat, SCC et al, GRL, (2007)



Quantifying scaling IV

Extended self similarity



3 4
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ˆ =<  and its remainder versus ,

ESS tests 

Generalized or extended self simlarity- ESS plot
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End

See the MPAGS web site for more 

reading…


