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Abstract 

We present results from self-consistent one-dimensional electromagnetic particle-in-cell simulation studies of non-linear 
electron-whistler wave-particle interactions. In contrast to analytical treatments that assume a constant amplitude, monochro- 
matic wave field, effects on the wave fields due to an evolving electron distribution a~e self-consistently represented in our 
simulations (over a wide frequency range from 0.04tOce to ~'100tOce). We analyse the phase space trajectories of the entire set of 
simulation electrons (many thousands) through application of the delay-coordinate technique. This enables us to establish the 
trapping frequencies of electrons directly from the trajectories. Additional details in the phase space structure and dynamical 
changes in the properties of the trajectories are also obtained. Results from two different sinmlations, in which the wave spec- 
trum is eventually dominated by a single whistler wave mode of relatively large amplitude (Bw/Bo ~" 0.2 - 0.3), show: (i) the 
phase space trapping of large numbers of simulation electrons (thousands) with characteristic frequencies around the expected 
primary trapping resonance frequency estimated from the observed wave amplitude; (ii) more than one strong characteristic 
frequency component in trapped electron phase space motion; (iii) the dynamics of the trapped process is time dependent, 
there being an evolutionary shift in time of trapped electron phase space trajectories towards lower characteristic frequencies. 
We suspect that (ii) is due to the presence of higher order trapping resonances under the relatively large wave amplitude, 
whilst (iii) is not explained by time independent analytical treatments that neglect the effects of particles on the wave field. 

1. Introduction 

A great deal of work has addressed the interaction 
of a monochromatic electron-whistler wave and an en- 
ergetic resonant electron(s) - such an interaction is 
thought to be essential in the generation of VLF trig- 
gered emissions in the earth's magnetosphere (see the 
review of [ l ]). Large amplitude wave-particle inter- 
actions are also expected to have fusion device and 
astrophysical applications [2]. 

* Corresponding author. 

In a system comprising a single charged particle in- 
teracting with a monochromatic, constant amplitude 

wave, it can be shown (e.g. in the case of an elec- 

trostatic wave in a constant magnetic field [3]), that 

a particle may exhibit trapped behaviour, so that in 

the reference frame of the wave the trapped particle 

Hamiltonian (to first order in the wave field) describes 

closed (elliptical) orbits which are a precession about 

the resonance point in phase space. Retaining higher 

orders of perturbation in the Hamiltonian generates a 

self-similar fine scale structure in the phase space or- 

bits, such that trapping is also possible at higher order 
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resonances. Such descriptions are non-self-consistent, 
neglecting for example the effect of trapped particles 
on the wave field. There have been previous attempts 
in retaining such effects, such as treating the wave 
field and trapped particle current in a linear approx- 
imation (e.g. [4]). When a completely self-consistent 
consideration of wave-particle interaction effects on 
both the wave fields and the electron distribution is de- 
sired, appropriate numerical simulations are extremely 
valuable. 

A variety of numerical simulation work, relevant to 
the nonlinear electron-whistler trapping process, has 
been performed (see [1]). None have looked at the 
process in detail by extracting the frequency infor- 
mation present in the entire set of simulation electron 
trajectories, and the possibility of higher order trap- 
ping resonances was never considered. In this paper, 
we analyse the frequency information present in the 
"~elocity space trajectories of electrons (many thou- 
sands) that are a representative sample of phase space 
(both resonant and non-resonant regions of phase 
space) in a pair of self-consistent one-dimensional 
(I-D) electromagnetic particle-in-cell (EM PIC) simu- 
lations in different regimes. The trajectory time series 
are reduced by application of the delay-coordinate 
technique (see, for example [5,6]) enabling us to 
establish the trapping frequencies of electrons and 
examine more detailed phase space structure and dy- 
namical changes in the properties of the trajectories. 
In this way, the studies provide a unique understand- 
ing of the non-linear electron-whistler wave-particle 
interaction. 

2. Electron equations of motion in a 
monochromatic whistler, wave 

Assuming a single monochromatic electron whistler 
mode wave propagating along a background magnetic 
field B0, with a constant magnetic amplitude Bw << B0 
(effectively only retaining terms up to first order in the 
wave field in the perturbed electron Hamiltonian, i.e. 
H = H0 + ¢ Hi, where ~ ,-~ Bw/B0 is the expansion 
parameter of H), it can be shown (e.g. [4]) that some 
electrons may be 'trapped' on closed phase pace or- 

bits around the parallel velocity Vllres for cyclotron res- 
onance with the wave (henceforth referred to as the pri- 
mary trapping resonance), where Vllre s --  ( ~ -  OJce)/k, 

and the electron gyrofrequency O~ce = e B o / m e .  T h e  

characteristic frequency of a trapped electron's motion 
about Vllres is the primary trapping frequency, given by 

l 

(I) 

where k is the wave number, v± the perpendicular 
electron speed at resonance. Trapped electrons deviate 
in vii by at most Avll ~, -I-21/2"~/k from Vllres [4]. 

The assumption Bw/B0 (g 1 neglects higher than 
first order wave field effects in the particle equations 
of phase space motion. If such effects are retained, 
such as in the general framework single particle, sin- 
gle wave treatment of [3] (note that the interaction 
considered therein is electron-Langmuir wave, and not 
electron-whistler), higher order, e.g. secondary and 
so on, trapping resonances appear within the primary 
trapping region. 

All model wave field treatments assuming constant 
Bw (including [3]) are non self-consistent, neglect- 
ing the effect of particles on the wave field. When 
a significant fraction of electrons are trapped, phase 
bunching may occur around a relative particle-wave 
gyrophase of 180 °, representing a so-called 'non- 
linear resonant current'. This current will modify the 
wave fields (see [ 1 ]). Important questions to consider 
are as follows. Does primary trapping exist around 

in a self-consistently evolving system containing a 
relatively large amplitude whistler wave (Bw/Bo "~ 

0.2-0.3 in the simulations presented here)? Do higher 
order resonances exist under such conditions? Is the 
phase space structure around resonance stable as as- 
sumed in time independent treatments? Under typical 
conditions for whistler wave growth due to an elec- 
tron distribution function which is initially anisotropic 
in velocity space, arc the resonant regions of phase 
space accessible to the particles which are initially 
not trapped? There have been previous simulation 
investigations into the trapping process of relevance 
to the first of these questions (e.g. [7]). However, 
no detailed analysis of all electron trajectories was 
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undertaken in such studies, and the other questions 
were not considered. In an attempt to address these 
questions, we investigate electron trajectories in vari- 
ous regions of phase space in self-consistent simula- 
tions, identify the characteristic frequencies of phase 
space motion, and look for possible signatures of the 
various trapping resonances (primary and secondary). 

3. Simulation studies 

Simulations of the electron-whistler mode instabil- 
ity have been made in I-D and (previously) 2-D us- 
ing an EM PIC simulation code (see [8] for details). 
The simulations presented here are the I-D studies l 
and 2 contained therein, with run times extended to 
25 and 40 electron gyroperiods, respectively. In each, 
a spatially uniform, energetic electron species with an 
anisotropic bi-Maxwellian velocity distribution func- 
tion was initialised (represented by 256 particles per 
simulation grid cell). A fixed ion background ensured 
overall charge neutrality. The studies shared an initial 
electron distribution temperature ratio of 7"1/I'll 0~ 4 

(T±, II being the temperatures perpendicular and paral- 
lel to the initially uniform background magnetic field 
B0 = B ~ )  and plasma frequency tope = i05 rad s - i  . 

The ratio fill = (nekBTll)/(B2/2~o) was varied in the 
two studies (fill = 0.14 in study l, and 0.45 in study 2). 
The initial electron distribution f ( v )  is unstable to the 
growth of whistler waves (see [8]), and in both studie:~ 
the wave spectrum is eventually dominated by a sin- 
gle, large amplitude, electron-whistler mode (actually 
two waves of identical [kl and opposite k, since f ( v )  
is non-beam like). 

Due to our use of periodic boundary conditions, 
only waves that fit an integral number of times into 
the simulation box length (Lx) are resolved, resulting 
in a discrete set of wave numbers kx = 2xmx/Lx 
where n = 0, + l ,  4-2 . . . .  We used 128 simulation 

grid cells, each of size Ax = ~.D (Debye length) 
to avoid possible numerical instability [9], giving 

I kx ]min = 2~r/128~.D and [ kx Imax = xt /kD. Elec- 
trostatic and electromagnetic effects are resolved over 

a frequency range from tOmin ~- 0.04toce to tom~ -" 

80toce (study 1), t o m i n  - "  O.025toce to t o m a x  - - "  370toce 

(study 2). The maximum phase speed represented 
tomax/kmax -- 1.7c (study 1) .and 1.74c (study 2) 
(based on ~. D(TII)) so that the simulation bandwidth 
just includes kc/to = 1; the regime for (relativistic) 
auto-resonance [10]. The initial anisotropic electron 
distribution is however, chosen to be unstable to 
modes of much lower to, k than these [8] a.qd we shall 
see that resonance occurs with modes of much larger 
kc/to so that relativistic effect are weak. 

Importantly, we perform and compare the results 
from two simulation studies, in which the trapping fre- 
quency ~ scales differently relative to the real wave 
frequency to. This allows us to unambiguously distin- 
guish the ~ (determined : Jm the particle trajectories) 
from the possible effect of waves which are unrelated 
to the trapping process. 

4. Results of  simulations 

4.1. One-dimensional swdy 1 

Fig. 1 shows the growth of magnetic energy in the 
linearly predicted growth wave modes containing most 
energy (Kx = 4, 5 and 6), relative to the total system 
magnetic wave energy ('Total'), during the l-D study 
l (see [8] for details). Note that we label wave modes 
by the convenient dimensionless wave numbers Kx = 
(1 + IkxlLx/2~r)sgn(kx), as used in Fig. 1. 

Units of time in Fig. 1 are in simulation time steps 
At, i.e. t" = t / A t  is used as the time coordinate. The 
electron plasma period Vpe and gyroperiod rce corre- 
spond to 80 and 160 At respectively, and the run time 
was 4000At (25rce). Two roughly distinct time inter- 
vals are identified:- (i) t" < 2000 (early), during which 
energy resides in several growth modes at a compara- 
ble level; (ii)/" > 2000 (late), during which the wave 
spectrum is dominated (> 95% of total) by wave mode 
Kx = 4 (this energy being shared roughly equally 
(within noise levels) between the two oppositely prop- 
agating wave modes Kx = 4-4; the effects of this on 
electron dynamics are considered in more detail later). 
Any trapping of electrons with this mode will be sub- 
relativistic as k4c/to4 ~ 5.6 (auto-resonance requires 

kc/to = 1). 
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Fig. !. Magnetic energy in simulation wave modes Kx = 4--6 during i -D study i. 

An estimated mode gx = 4 primary electron trap- 
ping frequency during i" > 2000, using (1) with a typ- 
ical / o±) = 1.5 x 108 m s-  I and the observed mode 4 

wave amplitude at/" -~, 3000 (Bw/B0 ~ 0.2), is ~ 
0.36tote. This corresponds to an estimated trapping pe- 
riod of ~ - 2'tr/~ = 440At. Fluctuations in ~ (at a 
fixed V.L ), due to fluctuations in Bw during/" > 2000 
(see Fig. I) are less than 5%, and are not expected to 
be important. However, as ~ is o±-dependent, an esti- 
mated ~" range, that accounts for both the variation in 
v± of a single trapped electron along its phase space 
orbit, and different v± for different trapped electrons, 
is appropriate. We calculate ~" = 360 -620At  for elec- 
trons within o± = 1 x 108 - 2  x 108 m s -2 (relativistic 
mass variations have been ignored, giving only ---5% 
discrepancy in ~). The interval 2000 < /"  < 4000 is 
therefore expected to contain several ~ for the major- 
ity of trapped electrons. 

The linearly predicted mode 4 growth and real fre- 

quencies [81 are ~'4 ~ 0.02tOce and 094 ~ 0.4tOce 
respectively, so that trapping effects are fast (non- 
adiabatic) with respect to gyromotion, occurring on a 
timescale "~rce (adiabatic simulations with a low ra- 
tio of W/to will require a much longer run time in 

order to observe trapping effects). For a given elec- 
tron, • is estimated at exact resonance (e.g., [I 1 ]), i.e. 
its minimum value, so that effects associated with the 
observed trapping period ~" and mode 4 wave period 
r4 = 2 ' t r / to4 will be seen to be distinguishable, even 
though ~ and r4 differ by only -,- 10%. Trapping effects 
are not expected to be important for other simulation 
wave modes during i" > 2000, since their amplitudes 
are generally too low (see, for example, Kx = 5, 6 in 
Fig. 1). 

T h e  vii vs. time of nine electron orbits initially in 
the region of vii ~ 5.8 × 107 m s -I  are shown in Fig. 2. 
Particularly after i" > 2000, these are strongly sugges- 

tive of large excursions in vii with some periodicity on 
more than one characteristic time scale. To investigate 
the electron dynamics occurring in the entire simula- 
tion, an analysis of the frequency information in all of 
the electron trajectories is required. This is achieved 
here by extracting the times at which trajectories cross 

a specified phase space plane of constant vii - -  Vnc (rel- 
ative to the initial geometry of B0), giving a much re- 

duced time series. For a given Vllc, a delay-coordinate 
plot is then constructed by plotting the successive full 

oscillation periods for all electrons crossing vii c on a 
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Fig. 2. Velocity trajectories of nine selected electrons from I-D study 1. The three chosen velocity surfaces for delay coordinate 
plots are also shown as horizontal lines. 

scatter plot as discussed further below. Three separate 

Vile were chosen, and the plots were constructed for 
each of these, separately for the two chosen time inter- 
vals. As indicated by the horizontal lines in Fig. 2, sur- 
faces Vile = 0, - 5  x 10 7, - 1 x 10 8 m s - i  were chosen. 

Fig. 3 illustrates the phase space geometry of these 

relative to the parallel cyclotron resonance velocities 

(Vllres) for the wave modes of Fig. 1. The estimated 
width of the mode 4 trapping region shown in Fig. 3 

(A vii ~ 1 x 10 8 m s -  ! ) is based on a value of (v±) 
1.5 x 10 8 m s -I  . Based on their proximity to the domi- 

nant mode 4 resonant velocity and trapping region, the 
three surfaces Vile = - 1  x 10 8, - 5  x 10 7, 0m s - I  are 

henceforth labelled 'near resonance', 'off resonance', 
and 'far off resonance' respectively. Electron trapping 
effects are expected to be seen chiefly in crossings of 

the 'near resonance' and to a lesser extent in 'off res- 

onance' surfaces, but are not expected to be important 

in the 'far off resonance' surface. 
As highlighted earlier, the mode 4 energy is shared 

equally (within noise levels) between the two modes 
Kx = 4-4. The linearly predicted cyclotron resonance 

velocities for these two modes are Vllres -- =FI.3 x 
l0 s m s - ]  respectively [8]. Since AVll ~ l0 s m s - I  
typically (see above), there is expected to be little (or 

no) overlap of the trapping regions for Kx = 4 and - 4  

(see Fig. 3), i.e. any trapping of electrons in vii < 0 is 
due to the single wave mode Kx = +4  only (this will 
be verified later through the delay-coordinate plots). 

Separate data sets were formed for each Vile, each 
containing all the times tl, t2 . . . .  at which particles 
cross the surface during the entire simulation (see the 
examples in Figs. 4 and 5). For each Vllo successive 

full oscillation periods At, = t,+2 - i n ,  Atn+!  = 

t,+4 -tn+2.. ,  were formed for all particles that crossed 
the surface. Each pair of successive crossing periods 

or coordinate pair (At, ,  Atn+l) was then allocated to 
the time interval/" < 2000 or/" > 2000 applicable 

to the time period t, to tn+4 spanned by the cross- 

ings. 
For a particular data set (i.e. chosen vile and time 

interval), a delay-coordinate plot was formed by plot- 

ting the set of (x, y) points {Atl . . .Np-l ,  At2...N,}p for 
all particles that crossed the chosen Vllc (Np denoting 
the number of crossing periods for a particle p in the 
set), i.e. overlaying the plots of many thousands of 

particles. 
Expected signatures in the delay-coordinate plots 

are as follows. In general, a single characteristic fre- 

quency to in the electron vii (t) would yield a single dot 

on the delay-coordinate plot at Atn+! = Atn = 2~r/a~ 

(see Fig. 4; in this and all subsequent delay-coordinate 
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Atn Atn  + 1 Atn  + 2""  Atn + 1 Y = X 

t'vvv  ~ ,  A t  n 

Fig. 4, Periodic electron phase space motion at a single characteristic frequency to yielding a dot at Atn+t = Atn = r = 2'a'/to on 
the delay-coordinate plot. 

plots the line Atn+l = Atn, or y = x, is included 

to highlight periodic motion at a single frequency). 

Two characteristic frequencies of  motion would com- 

bine to give two dots symmetrically positioned about 

y = x at Atn+! = 32, Atn = rl and vice versa (see 
Fig. 5; see also the trajectories in Fig. 2). Similarly, 

the presence of multiple characteristic frequencies in 

the vii(t) time series would generate a grid of dots 

on the delay-coordinate plot at the various time pe- 

riods. For a given Vllc, the resulting frequency grid 

expected to be most evident in the delay-coordinate 

plot will result from the combination of the dominant 

characteristic frequencies in trajectories in the region 

of phase space local to Vllc. We expect the possible 

characteristic frequencies in the simulation system to 

be: (i) a quantised 'grid'  of  all wave mode frequen- 

cies toj present in the simulat'on. This results from 

the effects of  these modes on electron phase space 
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Fig. 5. Electron phase space motion showing two characteristic frequencies oil, o,2. The resulting delay-coordinate plot shows dots 
at ri and r2. 

motion (all modes contain at least noise fluctuation 
level energy during the simulation); (ii) trapping fre- 
quencies associated with the dominant mode during 
the later stages of the simulation; (iii) the electron gy- 

rofrequency tOce of untrapped electrons with vii ,~. Vllc 
and significant v± (since vii is defined as along the 
initial background magnetic field B0, rather than the 
total magnetic field Bt about which gyromotion oc- 
curs, then for sufficiently large v i ,  the vu(t) as de- 
fined acquires a component of electron gyromotion). 

In the vii(t) we then expect: near resonance (vile ---- 
- 1 x 108 m s-I) ,  the nearest whistler mode resonance 

is through the dominant mode 4 (see Fig. 3), and the 
strongest characteristic frequencies are expected to be: 
the primary trapping frequency ~, the freqencies as- 
sociated with higher order resonance effects (if such 
effects are important), and the electron gyrofrequency 
tOce (perturbations in vu(t) due to noise level energy 
in all other simulation wave modes will in compari- 
son be relatively weak near resonance. Off resonance 
(Vllc = - 5  x 107ms-l) ,  we again expect the trap- 
ping and gyrofrequencies. Also, the effect of noise in 
other simulation wave modes will be more pronounced 
(since the trapping effect is weaker and a smaller frac- 

tion of the trajectories sampled are trapped off reso- 
nance), hence the grid toj of simulation wave mode 
frequencies should also contribute to the overall fre- 

quency grid. Finally, fa r  off resonance (Vllc -- 0), trap- 
ping effects are expected to be very weak, most tra- 

jectories sampled are untrapped, and we expect the toj 
grid to be the strongest set of characteristic frequen- 
cies in the delay-coordinate grid (the plane Vllc= 0 
cuts the peak of the electron distribution, Oil, O_l_ - O, 
hence most trajectories will not display gyromotion 

signatures). 

4.1.1. vile = - l0 s m s -!  crossings (near resonant) 
Fig. 6(A) and (B) contain the delay-coordinate plots 

for Vile -- - 108 m s-  ! crossings. Note that the axes on 
the delay-coordinate plots relevant to (A)/" < 2000, 
(B)/" > 2000, respectively correspond to simulation 
times /" = 0 -  2000 and t" = 2 0 0 0 -  4000, over 
which the information was obtained. These reveal the 

following:- 
Fig. 6(A)/" < 2000:- No apparent correlation be- 

tween subsequent full oscillation periods exists, i.e. 
no single clear relationship between Atn+l and At,: 
(rpe = 80 and Tce= 160 simulation time steps have 
been included in Fig. 6(A) for reference). During/" < 
2000, the wave spectrum is strongly non-time station- 
ary, with various wave modes growing, saturating, and 
decreasing in amplitude, on a time scale less than any 
individual trapping periods (see Fig. 1). As a result, 

trapping effects do not occur. 
Fig. 6(B) t" > 2000:- A strong bunching of points 

around several characteristic periods is now evident. 
Horizontal/vertical lines in Fig. 6(B) represent ~:ce and 
the mode 4 trapping period ~ = 440 (the estimated 



42 P.E. Devine, S.C. Chapman/Physica D 95 (1996) 35-49 

(A) 

+ 

<1 

< 2000 NEAR R E S O N A N C E  

"~ x vii c = - 1 0 8 m s - I  
p e \  / ce 

(B) 

1 , ~  • 

¥ - X  

+ 

250 ~ 
. . . .  , 

• ik':~,.:~'. ., ~ , .  • k::. ,:: ":" ' i 

> 2000 

te N 

I 
I 
t 

17 ,~  t 

t 
! 
! 
! 

150~ o 
t 
| 

! 

1250 t 
t 
i "  

i 
I 

1000 n 

I 
! 

750 t 
i 

• t 

Co ~ ? .'.~:<.¢,.;;' .~ 
. . ,  . o " "  ' i 

250 500 750 1000 

'T 
I range of 

' i ' ' " ' ' 

I 

i 

1250 1 ~  1 ~  2000 

At n At n 

(C) 

+ 

<1 

'~8 I;7 

\1 

OFF RESONANCE 

t < 2000 v//c = - 5 x l O 7 m s  -1 

( .  'i'~ i i. ~ / . ,  :,,.~, ~'~-., | 

a~- := -  ~__ .~ , -~ ,n~ . , 1 , , - . ~ - : , , .  - ' ~ - -  ' . ' "  - ' 
" ' , ~ , ;  ,? , . . . . .  

;o ' ' ~ ' 280 500 7 I~X}  1250 ! 1750 2000 

At n 

> 2000 
I;8 ~7 "1;6 ~ 5  ~4 I;3 

\ I /Z7 / 
(D) 

+ 

I I I W 

1250 

150G 

750 

2 ~  

<1 

' i 
! 

! 

I ; ,  ! 

I 
! 

I 
I 
I 
I 

i I 

I 
i I 
i I 

I 
q . , .  I 

' J  . o 

~, - "o  • ,o 

t q '  

~ ~ L . _ . . _ .  ................. 
~ .... -~/. , ~  ,~- , , , ', , ' ,  

! | . .  , 

250 ~o 750 , ~  ,~o , ~  ,;50 ~o 

Fig. 6. ( A - D )  I D study I delay-coordinate plots showing pairs of  crossing periods ( A t , ,  Atn+l)  of:- (A), (B): Vlt c = - 1 0 8 m  S - I  

during i" < 2000 and i' > 2000; (C), (D): vii c = - 5  × 107 m s  - I  during i" > 2000 (E-F)  ID study ! delay-coordinate plot. Crossings 
of  vii c = 0 during:- (E) t" < 2000, (F) i" > 2000. 



P.E. Devine, S.C. Chapman/Physica D 95 (1996) 35-49 43 

FAR OFF RESONANCE 

< 2000  Vile = 0 m s -  1 t > 2 0 0 0  

(E) 

+ 
,..= 
<1 

178 177 

, , o o 

: Z 
• . .  ! 

A t  n 

(F) 

+ 
Z~ 

<1 

1;8 I;7 -i;6 ~5 54 1;3 
\ ! / / / /  

!I': . . . . .  

1 0 0 0  

j , ~ . .  a . . . .  ~ , , .  Q 

. . . .  . . . . . . . . .  

t t i / 

750 I000 1 ~  1,,~O | 7SO 

A t  n 

Fig. 6. (continued) 

range o f f  due to the range of v± in the electron f (v )  

is represented by the dashed lines at 360, 620 time 

steps). 
One such bunching is around "--, roe, implying a sig- 

nificant number of near resonant electrons (vii ~ Vllres) 
are simply undergoing gyromotion rather than trapped 
motion. As described earlier, provided v± is significant 
gyromotion effects will appear in the delay-coordinate 
plot due to a 'tilt' of vii with respect to the total mag- 
netic field in the system about which gyromotion oc- 

curs. 
A second characteristic crossing period that may be 

identified is the primary trapping period f .  Around 
this a cluster of points is evident spanning the esti- 
mated range of ~ .  The position of ~ at the bottom left 

of the cluster of points corresponds to the minimum 
in ~" calculated for motion exactly on resenance (from 
Eq. ( 1 )). Hence, this feature is identified as the trapping 
of a significant number of electrons (approximately 
1600 particles each contribute an average of 2-3 points 
to Fig. 6(B)). Since there is not a simple spread in the 

data points around ~ and along the line y = x, or a 
stochastic spread about ~ and y = x, neither a first or- 
der (Bw << B0) model wave field description (e.g. [41), 
nor the combination of a first order description and 
stochastic (noise like) wave fluctuations, can account 
for the observed distribution of points at/around ~'. In- 
stead, there appear to be 4-5 distinguishable clusters 
of points in the T range, both on and offy = x. This in- 
dicates at least two strong characteristic frequencies in 
the velocity space trajectories of trapped electrons near 
resonance. The time separation between the centres of 
the two trapped clusters lying on y = x is approxi- 
mately 125, with corresponding frequencies ~ 0 . 3 5 t O c e  

and ~0.27tOce respectively, i.e. a frequency difference 
A~ ,-~ 0.08O)ce, approximately 20-25% of the primary 
trapping frequency ~ ~ 0.36race. Note that the mode 

4 linearly predicted real frequency (m4 = 0.4race) ex- 
ceeds ~ by 0.04Wee, a difference within a factor ~2  of 
the observed frequency difference in the trapped pop- 
ulation(s). We suspect that this is coincidental, how- 
ever, since in our second simulation, under a different 
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ratio of W/co (where co is the dominant wave mode's 
real frequency), the frequency difference Ico- ~I can 
not possibly account for the structure in the trapped 
population. A plausible explanation for the observed 
pattern is the onset of secondary trapping resonances, 
which will appear at different characteristic frequen- 
cies around ~. Trapped electron phase space orbits 
close to higher order resonances may explain the ad- 
ditional strong characteristic frequencies contributing 
to Fig. 6(B). 

Fig. 6(B) also displays an asymmetry about y = x 
in the distribution of crossing period points at/around 
Y, with a cluster of points with Atn < Y and Atn+! > 
~" (just to the left and above ~), for which there is a 
very weak corresponding cluster in the 'mirror region' 
about y = x (just to the fight and below T) instead, a 
scatter of far fewer points is present in this region (en- 
larged in Fig. 7). The number of points lying within 
two equal size square mirror regions (At . ,  At.+°) = 
(340-440, 440-540) and (440-540, 340-440), one 
above and to the left of Y, the other below and to the 
right, are 206 and 106, respectively. The difference 
(100 points) is larger than x / N / N  statistical uncer- 
tainties in the box occupancies (e.g. v/206 ~ 14.4) 
by a factor -~7-10. With regards the entire trapped 
population, the number of points in the square region 
At., At.+l = 300-700 time steps is 1628, 922 of 

which lie above y = x, and 706 below, the difference 
(216) being (7-8)xVrN/N. Hence, there are more 
points in the trapped population above y = x than 
below, the difference being statistically significant. 

This implies a net shift in time of electron motion 
(in vii (t)) towards a longer characteristic period (lower 
frequency); the trapped electrons in the asymmetric 
feature in Fig. 6(B) have Atn+! > Atn more often 
than At, > Atn+l. The Atn+t of this region on the 
plot is not the largest value of At in the cluster of 
points around Y and presumably then does not corre- 
spond to motion close to the separatfix of the trap- 
ping region. Note that the mode 4 amplitude slowly 
increases (by ~,10%) during/" > 2000 (see Fig. l). 
However, since ~ cx ~/-Sw (see Ill), an increase in 
Bw alone would actually imply a gradual increase in 

i.e. decrease in Y,  although for the small (~-10%) 
variation in Bw, this effect is very weak. This is not 
consistent with the observed evolution of trapped elec- 
tron dynamics towards a lower frequency, so that the 
time dependence in the trapping is not simply account- 
able for by a slowly evolving wave amplitude. The 
system of a single electron in a monochromatic wave 
propagating along uniform constant background mag- 
netic field has two space degrees of freedom (z, where 
~. = Vii and ¢,  the angle between -Bw and v_L) and 
if the wave amplitude is time varying, a third degree 

N E A R  R E S O N A N C E  

v//c = _lOSms -1 

+ 

ce 
\ 

10~ 1 " oJ"i 
t 
t 

i 
t 

":5C ! 

t 
° 

t 

- . ,  ° . .  . . . . .  . t . . ,  

! 

, ~ . ~ ,  t . * " o 

° . . . f  . 
I ~:"  . . ,  . I  

, .  . ~ :. - . . - ,  
;': ! .  , :.::~;.:.." . , 

l ~' " I 

' ! 

- , |  i 

At n 

range of  

/ 

'.,f, .;,., 
• • '~ I ' 
~'~,'. I , 

t > 2 0 0 0  

Fig. 7. An enlargement of Fig. 6(B) delay-coordinate plot for v//c = -108 ms -t crossings during/" > 2000. 



P.E. Devine. S.C. Chapman/Physica D 95 (1996) 35-49 4 5  

of freedom (effectively t). The time variation in Bw 

introduces the possibility of Arnold diffusion; an esti- 

mate of the rate of diffusion of trapped electron orbits 

in phase space is given by the variation of the width 

of the trapping region AVll ~ ~ or: x//Bw, again, this 
is weak. We might also expect Arnold diffusion to 

evolve the trapping period to a maximum (as trapped 

electrons move towards the separtrix), which is not the 

case here. 

4. i.2. Vllc -" - 5  x 107 m s-I crossings (off resonance) 
Fig. 6(C))" < 2000:- A wide scatter of points span- 

ning the range of individual wave mode periods ~- r6-8 

and -~ r4 is evident. The set of lines in Fig. 6(C) repre- 

sent, in increasing order of wave period (high ~ low 

frequency), the grid of linearly predicted whistler wave 

periods of the simulation modes Kx = 8, 7, 6, 5, 4, 3. 
Only modes up to Kx = 8 are shown because adja- 

cent wave periods are very close in value above this 

(modes up to K.~ = 65 exist in the simulation). 

Fig. 6(D) )" > 2000:- A grid of characteristic periods 

of electron phase space motion around Oll c - -  --5 x 
107 ms -I during/" > 2000 is observed. This results 

from the coupling of many characteristic frequencies. 

As we move the vii c surface further from resonance, 

we expect the vii(t) to be more strongly perturbed 

by the (noise level) fields resident in all wave modes 

allowed in the simulation. The delay-coordinate plot 

hence begins to reveal both the signature of oscilla- 

tions at the mode 4 trapping frequency ~ and motion 

at the other wave mode frequencies (toj, e.g. for modes 

Kx = 0--8 included in Fig. 6(D)). The population of 

trapped electrons within the ~ range in Fig. 6(D) dis- 

plays a pattern that is very similar to that seen near res- 

onance during the same time interval (see Fig. 6(B)). 

There is, however, an additonal strong bunching of 

points at the bottom corner of the ~ range in Fig. 6(D) 

that is not present in the near resonance plot. Since 

the mode 4 trapping region overlaps the mode 5-7 

cyclotron resonant regions of velocity space close to 

the vii c -- - 5  × 107m s -I surface (see Fig. 3), it 

is possible that off resonance overlap effects compli- 

cate the delay-coordinate plot relative to near reso- 

nance. 

4.1.3. vii c : 0 crossings (far off resonance) 
Fig. 6(E) i" < 2000:- As anticipated earlier, we ob- 

serve a strong bunching of points at the frequencies of 
individual wave mode periods K,  = 6, 7, 8. 

Fig. 6(F) i" > 2000:- There is now no evidence of 

the trapped population seen near and off resonance. In 
addition to the cluster of points noted above, the grid 

of strong characteristic frequencies now includes the 

mode 4 wave period r4 (400 time steps) on the line 

y = x. Coupling of the many characteristic frequen- 

cies produces the clusters of points off y = x. Finally, 

there are weak clusters of points in Fig. 6(F) at approx- 

imately (Atn, At,,+t ) = (250, 600) and (600, 250). A 

time period of 600 At corresponds roughly to the up- 

per limit of the estimated range in ~. We therefore, 

interpret this as the coupling of wave mode Kx = 

6, 7, 8 . . .  frequencies and the characteristic frequency 

of mode 4 trapped electrons that are closest to the sep- 

aratrix and have large enough amplitudes of oscilla- 

tion to reach Vllc= 0 (as seen in some of the Fig. 2 
trajectories, some trapped electrons do have sufficient 

amplitude to reach vile = 0). 

4.2. One-dimensional study 2 

Fig. 8 shows the magnetic wave energy in the ihl- 

early predicted growth modes containing most energy 

during I-D study 2 (rpe, roe = 130 and 740 simulation 

timesteps respectively). During/" > 10000, over 95% 

of the system magnetic wave energy resides in wave 

mode Kx = 2 (shared roughly equally between the 

two wave modes Kx = +2, but this is not expected to 

be an important consideration in the delay-coordinate 

plots, for the reasons outlined earlier). Three time in- 

tervals of interest are approximately identified, during 

which the wave spectrum energy:- (i)/" < 5000 re- 

sides in several growth modes, and is then dominated 

by mode Kx = 3; (ii) 5000 _< / _< I0000 shared 

(unequally but comparably) between two wave modes 

Kx = 3 and 2; (iii)/" > lO000 dominated by mode 

K r = 2. Again, resonance with mode 2 will be non- 

relativistic since k2c/to2 ~ 15.2. 
Based on the mode 2 amplitude Bw/Bo ~ 0.3 at 

/ m 10000 (c.f. Bw/Bo ~. 0.2 in study 1). and using 

( ! ) with a variation of "-- +5 × 107 m s-I about (~,±) = 
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Fig. 8. Magnetic wave energy in wave modes K~ =2--4 during I-D study 2. 

108m s -I ,  gives an estimated mode 2 trapping pe- 
riod range of g = 1380-2390At (an estimated pri- 
mary trapping frequency ~ ~ 0.44Wee, compared with 
the linearly predicted mode 2 real frequency m2 -~ 
0.22race; of. the corresponding mode 4 frequencies 
were ~ ~ 0.36race and m4 ~ 0 . 4 r a c e  respectively in 
study 1, i.e. the two studies do not simply scale to 
each other). The interval ? > 10000 is therefore ex- 
pected to contain roughly ten mode 2 trapping peri- 
ods for the majority of electrons. Similar calculations 
show that in the approximately 3000 time step period 
(2000 < ? < 5000) during which mode 3 dominates 
the wave spectrum (see Fig. 8), there are only expected 
to be about one or two mode 3 trapping periods. Also, 
the mode 3 wave amplitude varies by almost a factor 
of two between ? = 2500 and 5000. For both these 
reasons, there are not expected to be any significant 
mode 3 trapping of electrons during the time interval 
?<5000.  

The delay-coordinate plots were produced in the 
manner described earlier. Fig. 9 shows the posi- 

tions of the linearly predicted whistler mode cy- 
clotron resonance velocities (I)llres) tbr simulation 
modes Kx = 2--4. The mode 2 resonance velocity is 
OIires ~ -1.1 x lOams -I .  Hence, any mode 2 trap- 
ping effects are expected to be clearly identified in the 
Vllc = - - 1 0 8 m  s - i  delay-coordinate plot. We present 
delay-coordinate plots for the near resonance and off 
resonance surfaces during 10 000 < ? < 30 000 only 
(as expected, trapping effects are seen only in these 
plots). Far off resonance plots (not shown), as with 
the corresponding plots in the previous study 1 (see 
Fig. 6(E) and (F)), show the dominant characteristic 
frequencies in (untrapped)electron trajectories oN(t )  

to be the frequencies of simulation wave modes. 

4.2.1. Oll c - -  - 108 ms -I crossings (near resonant) 
Fig. IO(A) 10000 < ? < 30000:- A clear bunch- 

ing of points around separate characteristic periods 
is now evident. As in the near resonant crossings 
during the previous study I (see Fig. 6(B)), strong 
bunching at/around both the electron gyroperiod and 
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the estimated trapping period is observed. The clus- 

ter around ~ = 1690 is identified as the trapping of 

a large number of electrons by the dominant wave 

mode K t = 2 during/ '  > 10 000. This demonstrates 
that trapping at/around an estimated trapping period 

has now been identified in two simulations that are 
configured, and that evolve, differently. 

The trapped population is composed of several iden- 
tifiable clusters on and off y = x, i.e. again suggest- 

ing the coupling of at least two strong characteris- 
tic frequencies in the phase space motion of trapped 

electrons (although the trapped cluster geometry is 
different to that seen near resonance in the previous 

study I results of Fig. 6(B)). The frequency differ- 
ence between two adjacent clusters (one on y = x, 

one off) is approximately 0. I itoce. As in study I, sec- 
ondary trapping resonances are a plausible explana- 

tion for this feature. The only simulation wave mode 

frequency (to) for which Ito - ~1 is close to the ob- 
served frequency difference is that of simulation wave 

mode 3 (for which o,)3 "~, 0.5toce; c.f. the mode 2 trap- 
ping and real trapping frequencies are ~ ~ 0.44tote 

and to2 "~ 0.22toce). However, mode 3 contains very 
little energy relative to the dominant mode 2 durmg 

/" > 10000 (see Fig. 8). Also, the mode 3 cyclotron 
resonance velocity (the distance from which is a mea- 

sure of the influence a wave mode exerts on an elec- 

tron in phase space) is distant from the near resonance 
surface (see Fig. 9). it therefore, seems unlikely that 
a coupling of any of the individual simulation wave 

mode frequencies and the mode 2 trapping frequency 
can account for the observed pattern in the trapped 

population. 
The distribution of points in the trapped popu- 

lation about the estimated ~ and y = x is again 
asymmetric, there being more points above y = x 
than below it. Within the estimated range, there 
are 4022 points above the line y = x and 3529 
below it, which is a statistically significant differ- 

ence (above 8 times V ~  uncertainties). The At,,+j 

of the bunch of asymmetric dots on l0 A is in the 
vicinity of the minimum, rather than the maximum 

of the At of trapped orbits on the plot, again sug- 
gesting that the orbits are not close to the separatrix. 
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Such a clear effect was also observed in study 
I. Hence, the earlier discussion (study I) applies 

here. 

4.2.2. vile = - 5  x 107 m s-t  cn~ssings 
Fig. 10(B) i" > I0000:- There are a variety of char- 

acteristic periods of electron motion. All the separate 
clusters of points at and below the mode 4 wave pe- 
riod (r4), both on and offthe line y = x, coincide with 
the frequency grid of individual wave modes Kx = 
4, 5 . . . .  In addition, a population of trapped electrons 
around ~ is evident, with a distribution very similar to 
that discussed above. Finally, coupling of the strong 
trapping frequencies and the K.~ = 4, 5 . . . .  frequency 
grid leads to the clusters of points above r4 and off 
V - - X .  

5. Conclusions and discussion 

The non-linear phase space trapping of electrons 
in the field of a parallel propagating large amplitude 

whistler wave has been investigated in detail via two 
I-D EM PIC simulations with different scaling. The 
frequency int'ormation in all simulation electrons vii (t) 
was analysed by means of delay-coordinate plots, from 

which we conclude:- 
® The primary trapping resonance has been shown to 

exist under self-consistent conditions. The trapping 
of a large number of simulation electrons (many 
thousands) was identified by a cluster of dots on 
the delay-coordinate plots within the range of the 
primary trapping period (~) estimated from the 
observed dominant simulation wave mode ampli- 
tude. Trapping was identified in two regions of 
phase space, near resonance and to a lesser ex- 
tent off resonance, both of which were expected 
to lie within the estimated trapping region in 

phase space. 
• The distribution of points on the delay-coordinate 

plots at/around ~ indicated fine structure in phase 

space structure such that trapped electrons typi- 
cally undergo phase space motion with at least two 

strong characteristic frequencies. 
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• The detailed phase space structure of the trapped 
electron trajectories shows some evidence of time 
dependence, with a time evolution towards a lower 
characteristic oscillation period Atn+l > Atn, but 
this characteristic Atn+l is shorter than the maxi- 
mum period of trapped motion that is observed. 
The first of these results concerns the primary trap- 

ping resonance, also showing that resonant (trapping) 
regions of phase space are accessible to particles, 
and is predicted from non-self-consistent analyti- 
cal treatments in which a model wave field is pre- 
scribed and the trapping process is assumed to be 
time independent (e.g. [3]). Also, it seems plausi- 
ble that higher order trapping resonances present in 
such treatments (when the particle Hamiltonian is 
taken to higher order in the wave amplitude) may 
account for the second result. We expect such res- 
onances may be an important consideration at the 
relatively large wave amplitude representative of the 
simulations (Bw/i:;o ..... . 0.2). However, the evidence 
presented here is somewhat :.mbiguous, and fur- 
ther work is required in this respeci. Although such 
details are not expected to be important ir~ the mag- 
netospheric problem of VLF emissions :Bw/Bo 
10-6-10 -5 is typical [121), there may be interest- 
ing fusion device based (the non-linear dynamics of 
particles in a large amplitude wave field are an im- 
portant consideration in acceleration schemes 12]) 
and magnetospheric,'astrophysical applications (e.g. 
quasi-parallel bowshock in the earth's magnetosphere, 
astrophysical shocks). The third result is an evolu- 
tionary aspect of the trapping process. The trapping 
period identified with this evolutionary behaviour is 
well-defined and is shorter than the maximum period 
of trapped motion seen; hence it is not consistent 
with simple Arnold diffusion of trapped electrons 
towards the separatrix. The delay-coordinate anal- 
ysis presented here represents the first attempt to 
directly reconstruct phase space for a self-consistent 
simulation rather than analytical test particles. Its 
value as a time series analysis technique has been 
clearly illustrated in this study. Future simulation 
and theoretical studies should investigate whether 
and under what conditions higher order trapl~ng 
resonances are effective, and the reason(s) for the 

observed time dependence in the trapping process. 
Further simulation work in this respect is currently 
in progress. 
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