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ABSTRACT
Quantifying the scaling of fluctuations in the solar wind is central to testing predictions of
turbulence theories. We study spectral features of Alfvénic turbulence in fast solar wind.
We propose a general, instrument-independent method to estimate the uncertainty in velocity
fluctuations obtained by in situ satellite observations in the solar wind. We show that when
the measurement uncertainties of the velocity fluctuations are taken into account the less
energetic Elsasser spectrum obeys a unique power law scaling throughout the inertial range
as prevailing theories of magnetohydrodynamic (MHD) turbulence predict. Moreover, in the
solar wind interval analysed, the two Elsasser spectra are observed to have the same scaling
exponent γ = −1.54 throughout the inertial range.
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1 IN T RO D U C T I O N

Universality in isotropic, homogeneous turbulence is expressed
through its statistical scaling properties. In the absence of inter-
mittency, the scaling exponent for the inertial interval of hydro-
dynamic turbulence is completely determined by the assumption
of self-similarity (Kolmogorov 1941), leading to the well-known
unique −5/3 power spectral exponent. This is not the case for mag-
netohydrodynamic (MHD) turbulence where the magnetic field in-
troduces an additional physical quantity with the dimension of ve-
locity, namely the Alfvén velocity (Chapman, Hnat & Kiyani 2008)
and indeed it is an open question as to whether the scaling is univer-
sal. Detailed theoretical models of MHD turbulence are thus needed
to predict the scaling exponent, and its precise observational deter-
mination is essential in order to validate these theories.

In situ satellite observations of the solar wind magnetic field and
bulk flow span several decades in temporal scales and offer a ‘natural
laboratory’ for the study of MHD turbulence; the Reynolds number
exceeds ∼105 (Matthaeus et al. 2005). They have been extensively
used to test theoretical predictions of MHD turbulence (see, e.g.,
Marsch & Tu 1990; Bruno & Bavassano 1991; Grappin, Velli &
Mangeney 1991; Podesta et al. 2009; Podesta & Borovsky 2010;
Wicks et al. 2010; Chen et al. 2011 and references therein). The
Elsasser fields, Z± = v ± B/

√
4πρ, where v and B are the veloc-

ity and magnetic fields, respectively, and ρ is the average density,
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represent eigenfunctions of counter propagating (with respect to the
mean magnetic field) Alfvén waves and therefore they are primary
fields for the study of incompressible MHD turbulence. Fluctua-
tions in the fast solar wind are strongly imbalanced – there is more
power in Alfvén waves propagating outward from the sun than to-
wards it (e.g. Bruno & Carbone 2005) so that the power in Z+

typically dominates over that in Z−. As with many other quanti-
ties that characterize physical properties of the turbulent flow [e.g.
Yaglom relations (Politano & Pouquet 1998; Carbone et al. 2009;
Smith et al. 2009) and dynamic alignment angle (Podesta et al.
2009)], the Elsasser variables combine velocity and magnetic field
fluctuations as a function of temporal scale. Pioneering observations
from the Helios missions showed that in the fast solar wind streams
at 0.3 au the observed power spectrum of Z− (the sub-dominant
component) did not follow a single power law shape. At very low
frequencies corresponding to ‘1/f ’ range (f < 3 × 10−4 Hz), the
spectral slope γ − was close to Kolmogorov’s value (γ − ≈ −1.67),
whereas in the low frequency part of the inertial interval (5 ×
10−4 < f < 2 × 10−3Hz) the Z− power spectrum was much shal-
lower, with γ − ≈ −1.3 − 1.4 (Grappin, Mangeney & Marsch
1990; Marsch & Tu 1990; Bruno & Bavassano 1991; Grappin
et al. 1991). At 1 au, the observed spectral slope was approxi-
mately equal to Kolmogorov’s value both in the 1/f range and low
frequency part of the inertial interval (Marsch & Tu 1990). Recently
using high cadence WIND observations, Wicks et al. (2010) studied
spectral features of the Elsasser variables in the high frequency part
of the inertial interval for the first time. They showed that at 1 au
(in accordance with earlier studies) in the low frequency part of
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the inertial interval (10−3 < f < 10−2 Hz) Z− nearly follows Kol-
mogorov scaling which at higher frequencies (f > 10−2 Hz) is more
shallow with γ − ≈ −1.3. The absence of single scaling of the sub-
dominant Elsasser field in the entire inertial interval contradicts all
recently developed models of strong, anisotropic imbalanced MHD
turbulence (Lithwick, Goldreich & Sridhar 2007; Beresnyak &
Lazarian 2008; Chandran 2008; Perez & Boldyrev 2009; Podesta &
Bhattacharjee 2010) which predict a single scaling for sub-dominant
Z− spectrum (this does not mean that the spectral indices of the
dominant and sub-dominant Elsasser fields should be the same in
the inertial interval). They are also inconsistent with the results of
recent high resolution direct numerical simulations of imbalanced
MHD turbulence which showed single scaling of the sub-dominant
Elsasser field in the inertial interval (Beresnyak & Lazarian 2008;
Perez & Boldyrev 2009, 2010).

Control of observational uncertainty in the in situ observations is
non-trivial, although these errors often have known bounds. There
are different challenges for magnetic field and velocity measure-
ments; solar wind velocity observations are intrinsically more uncer-
tain compared to the magnetic field data. In this paper, we propose
a general, instrument-independent method to estimate the uncer-
tainty on velocity field fluctuations direct from the data. We obtain
the systematic shift that this uncertainty introduces into observed
spectral exponents. We will see that the shallower Z− spectrum at
high frequencies can be entirely accounted for by this uncertainty
in the velocity data and the observations of the Z± spectra may in
fact within achievable accuracy of the observations be in agreement
with the predictions of theory and numerical simulations.

2 DATA A NA LY SIS

We use data obtained by the WIND spacecraft at 3 s resolution.
Magnetic field data are provided by the Magnetic Field Investigation
(MFI) instrument (Lepping et al. 1995) and density and velocity data
by the three dimensional plasma (3DP) instrument (Lin et al. 1995).
We use observations made during a quiet fast stream. The start time
of the interval is 06:00 of 2008 April 06 and the stop time is 12:00 of
2008 April 08. During this interval, the solar wind speed remained
above 550 km s−1. The energy of compressive fluctuations was an
order of magnitude lower than that of incompressible fluctuations
and, consequently, magnetic and velocity fluctuations, being mainly
Alfvénic, were dominated by the components perpendicular to the
local mean field. The mean field, B̄(t, τ ), at some time t and on
scale τ is defined as the magnetic field averaged over the interval
[t − τ , t + 2τ ]. The fluctuations of the velocity and magnetic field
are defined by standard expressions δv(t, τ ) = v(t + τ ) − v(t) and
δB(t, τ ) = B(t + τ ) − B(t), respectively.

There are several sources of uncertainty in the solar wind veloc-
ity measurements (Podesta & Borovsky 2010). The first source is
the uncertainty in assessment of the proton distribution function.
In addition, in common with all velocity in situ observations, the
3 s velocity observations on WIND (as well as any other in situ
measurements of moments of the particle distribution function) are
quantized before ground transmission and this quantization results
in high frequency noise or quantization noise. These, and other con-
tributions to observational uncertainty, decorrelate the velocity and
magnetic field fluctuations at high frequencies. White, delta corre-
lated noise provides a reasonable generic, instrument-independent
model for the uncertainty (Podesta & Borovsky 2010). Any mea-
surement of a velocity component fluctuation δvo can then be rep-
resented as a sum of the ‘real’ turbulent signal δvs and noise δvn

which has zero mean and standard deviation ε, so δvo = δvs + δvn.

Figure 1. Autocorrelation functions RδBy (τ,�) (black dashed line) of the
GSE y component of the magnetic field fluctuation and Rδvy (τ, �) (red solid
line) with the time lag � = 3 s.

Note that the rms value of a single velocity measurement vn used
to characterize velocity uncertainties in other studies (Podesta et al.
2009; Podesta & Borovsky 2010) is, in our notations, ε/

√
2. In

what follows, we will neglect the uncertainties in the magnetic field
measurements since generally these are small relative to those of
the velocity measurements (Podesta & Borovsky 2010; Wicks et al.
2010).

We will first quantify the velocity uncertainty from the data. We
will exploit the fact that both the turbulent signal and the noise
are random variables with distinct characteristic autocorrelation
time-scales. We make a key assumption that the autocorrelation
time-scale of the underlying turbulent signal is that observed in
the magnetic field component fluctuations δBo (they have negligi-
ble noise) and that this is also the autocorrelation time-scale of the
‘true’ turbulent velocity component fluctuations δvs. Any difference
in the autocorrelation functions of the observed δvo and δBo are thus
attributable to the (delta-correlated) noise δvn on the velocity. The
autocorrelation coefficient (AC) of a component δv on time lag � is
Rδv(τ , �) ≡ 〈δv(t + �, τ )δv(t, τ )〉/〈δv(t, τ )2〉, where angular brack-
ets denote time averages with respect to the entire studied interval
(i.e. with respect to all possible values of t). The ACs RδBo (τ, �) and
Rδvo (τ, �) for GSE y components of the magnetic field and velocity
fluctuations are plotted in Fig. 1 for lag � = 3s as a function of scale
τ with black solid and red dashed lines, respectively. We see that
the AC grows with scale τ for both signals and that the velocity AC
is systematically lower than that of the magnetic field, consistent
with the assumption of uncorrelated noise that principally affects
the velocity signal. Given these assumptions one can construct a
modelled noisy signal by adding uncorrelated noise to the magnetic
field observations. The modelled noisy fluctuations δBo +n = δBo +
δBn, where δBn are delta correlated Gaussian distributed random
numbers with zero mean and standard deviation εB. The magnitude
of the modelled noise εB can then be systematically varied. We first
verify that this simple noise model is sufficient to reproduce the
AC as a function of τ for the velocity fluctuations. The AC of the
modelled δBo +n is shown by the black crosses in Fig. 1 and this
can be seen to closely coincide with the observed AC of velocity
fluctuations δvo. Assuming Alfvénic fluctuations the magnitude of
εB used to generate this curve corresponds to an uncertainty in the
velocity fluctuations of

εv ≡ εB

√
〈δv2

o〉
〈δB2

o+n〉
= 4 km s−1. (1)

Hereafter in this paper ε denotes the rms value of the observed ve-
locity fluctuation δv, whereas εv denotes its estimate, derived using
different methods described in the paper. Thus, ε ∼ 4 km s−1 (which
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Figure 2. The normalized second-order structure functions: of the GSE z
component of the sub-dominant Elsasser variable Z−

z (red dashed line), of
the dominant Elsasser variable Z+

z (black solid line) and S−
2 (circles, see

the text for details). In the inset: the second-order structure functions of
the sub-dominant Elsasser variable for different values of added Gaussian
noise. Raw observations are denoted by the solid line, and added noise is
equivalent to εv = 2 km s−1 (dashed line), εv = 4 km s−1 (dash-dotted line)
and εv = 5 km s−1 (dotted line).

corresponds to the uncertainty of a single velocity component of
ε/

√
2 ∼ 2.83 km s−1) is a reasonable estimate of the amplitude of

the noise on the turbulent velocity signal. We will develop this idea
to obtain a general method to estimate the uncertainty direct from
the data. In the following section, we will compare our assessment
of the velocity measurement uncertainties with the estimate derived
in other studies. First, we will see how these uncertainties can affect
measurements of scaling exponents and the conclusions that can be
drawn from them.

In Fig. 2 we plot the observed second-order structure func-
tions S2 of a component of the fluctuations in the Elsasser vari-
ables, where the Elsasser components are given by δZ±

i (τ ) =
δvi(t, τ ) ± δBi(t, τ )/

√
4πρ̄ and ρ̄(τ ) is the local mean value of

the density averaged over the time-scale of the fluctuations τ , i.e.
over the interval [t, t + τ ] and S±

2 = 〈δZ±
i (τ )2〉. The solid lines

are the structure functions of GSE z components of the dominant
δZ+

z (black solid line) and sub-dominant δZ−
z (red dashed line)

fields. They are normalized to have the same values at τ = 10 min
scale on this plot; the power in δZ+

z is 20 times that in δZ−
z at

τ = 10 min scale. For the ideal statistical scaling of fully devel-
oped MHD turbulence, we anticipate the scaling S2 ∼ τ ζ±(2) and
turbulence theories predict constant values of ζ±(2) over the entire
inertial interval (they are directly related to the power spectral ex-
ponents γ ± via γ ± = −ζ±(2) − 1). We can see that consistent with
earlier studies (e.g. Wicks et al. 2010), the sub-dominant Elsasser
variable does not follow a single power law in the inertial inter-
val. A linear mean least-squares fit on the log–log plot over scales
30 s < τ < 10 min gives γ + = −1.54 ± 0.02 and γ − = −1.40 ±
0.02, consistent with previous observations (Marsch & Tu 1990;
Bruno & Bavassano 1991; Grappin et al. 1991; Wicks et al.
2010).

A quantitative demonstration of the effect of noise is provided by
calculating S−

2 (δBo+n, δvo) ≡ 〈[δvi,o − (δBi,o + δBi,n)/
√

4πρ̄
]2〉

which for uncorrelated noise is equivalent to S−
2 (δBo, δvo) + ε2

v .
Here a different ‘Alfvénic’ relation, εv = εB/

√
4πρ̄, is used to

relate the velocity and magnetic field uncertainties. This is shown
in the inset of Fig. 2 for a range of amplitudes of δBn, which are
equivalent to velocity noise uncertainties of εv = 2, 4 and 5 km s−1.
We can see that addition of ‘white’ (delta-correlated) noise always
systematically ‘flattens’ these curves, that is, it decreases the value
of the scaling exponent; for εv = 4 km s−1 the pseudo-noise strongly

affects S−
2 at all scales in the inertial interval. The ‘flattening’ of the

pseudo-noisy S−
2 (δBo+n, δvo) curve, that is, the change in the mean

exponent over time-scales 30 s <τ < 10 min is �γ − ≈ 0.13, is close
to the observed difference between exponents of the dominant and
sub-dominant fields (γ − − γ + = 0.14); hence, this difference could
be just due to noise in the velocity data.

We now obtain an estimate of the structure function in the absence
of the noise in the velocity, S−

2 (δBo, δvs) ≡ 〈(δZ−
s )2〉, where δZ−

s =
δvs − δBo/

√
4πρ̄. We have that the observed structure function

S−
2 (δBo, δvo) = 〈(δZ−

s +δvn)2〉 = S−
2 (δBo, δvs)+2〈δZ−

s δvn〉+ε2.
Assuming as before that the turbulent signal and the velocity er-
ror are uncorrelated (〈δZ−

s δvn〉 = 0), we obtain S−
2 (δBo, δvs) =

S−
2 (δBo, δvo) − ε2. The plot of our estimated S−

2 (δBo, δvs) is given
by black circles in Fig. 2 for ε = 4 km s−1. This error-compensated
sub-dominant S−

2 (δBo, δvs) curve now has a single scaling through-
out the inertial range, consistent with current theories and numeri-
cal predictions (Lithwick et al. 2007; Beresnyak & Lazarian 2008;
Chandran 2008; Perez & Boldyrev 2009; Podesta & Bhattachar-
jee 2010; Podesta 2011a,b). We can also see that the slope of
S−

2 (δBo, δvs) coincides quite closely with the observed slope of
the dominant Elsasser variable S+

2 . The uncertainty in the velocity
that we have estimated from the data is thus sufficient to account
for the departure in scaling between the δZ− and δZ+ Elsasser
variables and these observations may in fact within the achievable
accuracy be in agreement with theories (Lithwick et al. 2007; Perez
& Boldyrev 2009; Podesta & Bhattacharjee 2010) that predict a
single scaling for δZ− and δZ+.

We have verified that δZ+ is not strongly affected by velocity
uncertainties of this amplitude: S+

2 remains almost unchanged for
εv < 5 km s−1. This conclusion is also supported by the fact that
as shown in Fig. 2, S+

2 has a convex shape, which is typical for
finite range hydrodynamic and MHD turbulence (Benzi et al. 1993;
Chapman & Nicol 2009), whereas S−

2 is concave, consistent with
‘shallowing’ at small scales due to noise effects. In addition to
the velocity measurement uncertainties, the Elsasser fields are also
affected by uncertainties related to the density measurement. Our
analysis shows that adding the same amount of relative modelled
noise to the density data has negligible influence on the results. This
is not surprising, as the definition of the Elsasser fields is in terms
at the mean value of the density over scales, and this reduces the
influence of density uncertainties due to the central limit theorem.

We now outline a method to explicitly determine the uncertainty
as a function of scale τ and time lag � from the observations. We will
generalize the approach shown in Fig. 1. Given the assumption that
RδBo (τ,�) = Rδvs (τ,�) and again that the noise is delta correlated
〈δvn(t + �)δvn(t)〉 = 0, we can obtain the uncertainty from the AC
directly:

ε = 〈δvo(τ )2〉
√

1 − Rδvo (τ,�)

RδBo (τ, �)
. (2)

The dependence of ε on scale τ derived by equation (2) for � = 3 s
is presented in Fig. 3. The results obtained by applying equation (2)
to x, y and z components of magnetic field and velocity fluctuations
are given by solid, dotted and dash–dotted lines, respectively. The
inset shows the dependence of ε on time lag � for τ = 1 min.
As we see, the results are consistent with the estimate of ε =
4 km s−1 used above. Moreover, it can be seen that ε has very weak
dependence on both τ and �, supporting a posteriori the assumption
that uncorrelated white noise is a suitable approximation for the
velocity uncertainty.
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Figure 3. The observational uncertainty ε derived by equation (2) for x
(solid line), y (dashed) and z (dash–dotted) components of the perturbations
for � = 3 s. In the inset: � dependence of ε for τ = 1 min . The grey line
denotes the rms value of δvp.

3 D ISCUSSION

Recently, in situ solar wind data have been used by Podesta et al.
(2009) to test the prediction of scale-dependent dynamic align-
ment in MHD turbulence (Boldyrev 2006). This relies on the deter-
mination of the angle between magnetic and velocity fluctuations
perpendicular to the local mean magnetic field direction. The ob-
servational uncertainty is known to make a significant contribution
to the component of the velocity perturbation perpendicular to the
magnetic field perturbation δvp(t, τ ) = δB⊥ × δv⊥/δB⊥ even at
quite large scales τ ∼ 10 min (Podesta et al. 2009). We plot the
rms value of the observed δvp,o on Fig. 3 (grey line). As can be
seen for fluctuations on scales τ of a few minutes or less, the
observed δvp,o is almost entirely dominated by observational un-
certainty. The estimate of the observational uncertainty in Podesta
et al. (2009) gave a somewhat lower value, which in our notation
is ε ≈ 1.5

√
2 km s−1. In Podesta et al. (2009), the alignment angle

θA ≡ arcsin(〈δvpδB⊥〉/〈δv⊥δB⊥〉) ≈ δvp/
√

〈δv⊥(τ )2〉 was used to
estimate the observational uncertainty. In fact, correlation between
δB⊥ and δv⊥ is much stronger than correlation between δB⊥ and
δvp (because the latter at small scales is strongly dominated by the
error). Detailed analysis shows that this increases the estimates in
Podesta et al. (2009) by a factor ∼1.6. Also, the local alignment
angle between velocity and magnetic fields θ is a random variable
with zero mean. Any measure of the alignment angle (such as the
mean of the absolute value of the alignment angle) should thus
be related to the standard deviation σ θ of the angle. If for highly
aligned cases we assume that θ is close to Gaussian distributed, then
its absolute value is described by the half-normal distribution and
its mathematical expectation is given by σθ

√
1 − 2/π (and not σ θ )

and this yields another factor of 1.2533 compared to the estimate of
Podesta et al. (2009).

This uncertainty of ≈4 km s−1 in the velocity fluctuations will
systematically reduce the scaling exponent of the velocity com-
pared to that of the magnetic field, if as we have assumed here
the uncertainty in the magnetic field can be neglected in such a
comparison. We estimate that this uncertainty alone would result
in a difference in the power spectral exponents of γ v − γ B ≈
0.04. This is less than the observed difference which is typically
in the range ∼0.1 (Perez & Boldyrev 2009) to ∼0.2 (Tessein et al.
2009). These estimates are sufficiently close however to merit more
detailed analysis.

Recently several attempts have been made to determine MHD en-
ergy cascade rates in the solar wind via Yaglom relations (Carbone
et al. 2009; Smith et al. 2009), which relate third-order mixed mo-

ments of Elsasser variables with energy dissipation rates (Politano
& Pouquet 1998)〈
δZ∓

L |δZ±|2
〉

= −4

3
ε±r. (3)

Here δZ∓
L = δZ∓ · r̂ and ε± are energy dissipation rates. Assuming

as before that the turbulent signal and the velocity error are un-
correlated, and substituting δv = δvs + δvn, it is straightforward to
show that velocity uncertainties have no influence on the third-order
moments. This finding shows an important advantage of third-order
moment analysis compared to the second-order structure function
analysis which, as shown above, are significantly affected by the
velocity uncertainties.

Finally, we have also applied the above methods to WIND ob-
servations of slow solar wind streams (with the wind speed below
400 km s−1) during solar maximum and we found a significantly
smaller value for the velocity uncertainty ε ≈ 2 km s−1. This dif-
ference may be a consequence of different plasma density in fast
and slow solar wind streams. Alternatively, it is possible that the
observed difference indicates the fact that the uncertainty of the
velocity is strongly correlated with the solar wind speed. Detailed
analysis of this topic will be presented elsewhere.

4 C O N C L U S I O N S

In summary, we have presented a general, instrument-independent
method to determine uncertainty in the velocity fluctuations in sin-
gle point measurements. We have shown that this uncertainty is
sufficient to account for both the absence of single scaling of the
sub-dominant Elsasser field and the difference of Z± slopes in the
inertial interval. Thus, our findings are able to report for the first
time that the observations are, within the achievable accuracy, in
agreement with the predictions of theory and numerical simula-
tions.

AC K N OW L E D G M E N T S

The authors acknowledge the WIND instrument teams for providing
MFI and 3DP data. This work was supported by the UK STFC.

R E F E R E N C E S

Benzi R., Ciliberto S., Tripiccione R., Baudet C., Massaioli F., Succi S.,
1993, Phys. Rev. E, 48, R29

Beresnyak A., Lazarian A., 2008, ApJ, 682, 1070
Boldyrev S., 2006, Phys. Rev. Lett., 96, 115002
Bruno R., Bavassano B., 1991, J. Geophys. Res., 5, 7841
Bruno R., Carbone V., 2005, Living Rev. Sol. Phys. 2, 4
Carbone V., Marino R., Sorriso-Valvo L., Noullez A., Bruno R., 2009, Phys.

Rev. Lett., 103, 061102
Chandran B. D. G., 2008, ApJ, 685, 646
Chapman S. C., Nicol R. M., 2009, Phys. Rev. Lett., 103, 241101
Chapman S. C., Hnat B., Kiyani K., 2008, Nonlinear Process Geophys., 15,

445
Chen C. H. K., Mallet A., Yousef T. A., Schekochihin A. A., Horbury T. S.,

2011, MNRAS, 415, 3219
Grappin R., Mangeney A., Marsch E., 1990, J. Geophys. Res., 95, 8197
Grappin R., Velli M., Mangeney A., 1991, Ann. Geophys., 9, 416
Kolmogorov A. N., 1941, Dokl. Akad. Nauk SSSR 31, 538
Lepping R. P. et al., 1995, Space Sci. Rev., 71, 125
Lin R. P. et al., 1995, Space Sci. Rev., 71, 207
Lithwick Y., Goldreich P., Sridhar S., 2007, ApJ, 655, 269
Marsch E., Tu C.-Y., 1990, J. Geophys. Res., 95, 8211

C© 2012 The Authors, MNRAS 426, 951–955
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



Measurement uncertainties of MHD turbulence 955

Matthaeus W. H., Dasso S., Weygand J. M., Milano L. J., Smith C. W.,
Kivelson M. G., 2005, Phys. Rev. Lett., 95, 231101

Perez J. C., Boldyrev S., 2009, Phys. Rev. Lett., 102, 025003
Perez J. C., Boldyrev S., 2010, Phys. Plasmas, 17, 055903
Podesta J., 2011a, Phys. Plasmas, 18, 012906
Podesta J., 2011b, Phys. Plasmas, 18, 012907
Podesta J., Bhattacharjee A., 2010, ApJ, 718, 1151
Podesta J. J., Borovsky J. E., 2010, Phys. Plasmas, 17, 112905
Podesta J. J., Chandran B. D. G., Bhattacharjee A., Roberts D. A., Goldstein

M. L., 2009, J. Geophys. Res., 114, 01107
Politano H., Pouquet A., 1998, Geophys. Res. Lett., 25, 273

Smith C. W., Stawarz J. E., Vasquez B. J., Forman M. A., MacBride B. T.,
2009, Phys. Rev. Lett., 103, 201101

Tessein J. A., Smith C. W., MacBride B. T., Matthaeus W. H., Forman M.
A., Borovsky J. E., 2009, ApJ, 692, 684

Wicks R. T., Horbury T. S., Chen C. H. K., Schekochihin A. A., 2010,
MNRAS, 407, L31

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2012 The Authors, MNRAS 426, 951–955
Monthly Notices of the Royal Astronomical Society C© 2012 RAS




