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In situ observations of the fluctuating solar wind flow show that the energy of magnetic field

fluctuations always exceeds that of the kinetic energy, and therefore the difference between the

kinetic and magnetic energies, known as the residual energy, is always negative. The same

behaviour is found in numerical simulations of magnetohydrodynamic turbulence. We study the

dynamics of the residual energy for strong, anisotropic, critically balanced magnetohydrodynamic

turbulence using the eddy damped quasi-normal Markovian approximation. Our analysis shows

that for stationary critically balanced magnetohydrodynamic turbulence, negative residual energy

will always be generated by nonlinear interacting Alfv�en waves. This offers a general explanation

for the observation of negative residual energy in solar wind turbulence and in the numerical

simulations. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4764469]

I. INTRODUCTION

Plasma turbulence plays an important role in many

astrophysical problems, such as heating of the solar wind,

transport in accretion disks, and scattering of cosmic rays

(for a review, see, e.g., Refs. 1 and 2). Magnetohydrodynam-

ics is a suitable approach to study relatively large scale, low

frequency phenomena. Moreover, incompressible Alfv�enic

fluctuations in a collisionless plasma (such as in the solar

wind) are well described by ideal magnetohydrodynamic

(MHD) equations despite the collisionless nature of the

plasma.3 The first model of incompressible MHD turbulence

was proposed by Iroshnikov4 and Kraichnan5 who realized

one of the key features of the Alfv�enic turbulence–nonlinear

interaction is possible only between Alfv�en waves propagat-

ing in opposite directions along the mean magnetic field.

The energy cascade in MHD turbulence then occurs as a

result of collisions between these oppositely propagating

Alfv�en waves. Ideal MHD equations conserve separately the

energies of both interacting waves that are propagating paral-

lel and anti-parallel w.r.t. the mean magnetic field. In the

Alfv�en wave there is an equipartition between magnetic

(Em ¼ b2=8p, where b is the magnetic field perturbation)

and kinetic (Ek ¼ qv2=2, where v is the velocity perturbation

and q is the density) energies. Hence one might expect that

this equipartition should hold for developed MHD turbulence

as well. Surprisingly, both solar wind observations6–11 and

numerical simulations12,15,16 show that in the inertial interval

of MHD turbulence, the difference between the kinetic and

magnetic energies, the residual energy ER ¼ Ek � Em, is

always negative, i.e., the magnetic energy always exceeds

the kinetic energy. Therefore, negative residual energy in the

entire inertial interval seems to be generic feature of MHD

turbulence, and any complete model of MHD turbulence

should be consistent with this fact.

The dynamics of the residual energy in MHD turbulence

has been studied theoretically by different authors in the

past.1,13–17 These studies were focused on understanding the

origin of negative residual energy and on determination of its

self-similar spectrum in the inertial interval of MHD turbu-

lence. Grappin et al.14 studied the dynamics of the residual

energy for isotropic MHD turbulence in the framework of the

eddy damped quasi-normal Markovian (EDQNM) approxima-

tion (for application of the EDQNM to hydrodynamic turbu-

lence, see Refs. 18 and 19. This approach was first applied to

MHD turbulence in Refs. 20 and 21). They concluded that the

stationary solution of the residual energy spectrum ERðkÞ is

the result of the balance between the “dissipation term” pro-

vided by the local nonlinear interactions and the “generation

term” related to the nonlocal interactions of Alfv�en waves.

M€uller and Grappin15 extended these results to the case of

globally isotropic MHD turbulence in the presence of strong

background magnetic field. Recently Wang et al.16 studied

the dynamics of the residual energy in the framework of weak
turbulence theory. The authors derived the governing equation

of the residual energy and suggested (but did not show) that

the interaction of Alfv�en waves spontaneously generates neg-

ative residual energy even if it is absent initially. This sugges-

tion was supported by numerical simulations. Using a simple

model of weakly colliding Alfv�en waves it has been demon-

strated that the magnetic energy is generated more effectively

than the kinetic energy.17

In this paper we show for the first time how negative re-

sidual energy must arise generally from strong MHD turbu-

lence. We study the dynamics of residual energy for strong,

anisotropic critically balanced MHD turbulence in the frame-

work of the EDQNM approximation. We derive the govern-

ing equation for residual energy and show that even if the
residual energy is absent initially, negative residual energy

is generated by nonlinearly interacting Alfv�en waves. This

provides a natural explanation for the observed properties of

the residual energy in the solar wind and in numerical simu-

lations of strong MHD turbulence.

II. MAIN FORMALISM

We consider incompressible MHD turbulence in the

presence of a constant magnetic field B0 directed along z
axis. The Elsasser variables w6 ¼ v 6 b=

ffiffiffiffiffiffiffiffi
4pq
p

, the eigen-

functions of counter propagating Alfv�en waves, are usually
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considered as the most fundamental variables to study MHD

turbulence.1 The dynamics of the Elsasser variables in the

absence of dissipative effects is governed by the incompres-

sible MHD equations

@

@t
7VA � r

� �
w6 þ ðw7 � rÞw6 þrP ¼ 0; (1)

r � w6 ¼ 0: (2)

Here P is the total (hydrodynamic plus magnetic) pressure

and VA � B0=
ffiffiffiffiffiffiffiffi
4pq
p

is the Alfv�en velocity.

We Fourier transform and eliminate the pressure terms

to obtain22

@

@t
7ixk

� �
~w6 ¼ �i

ð
dF k

1;2½~w6
1 � k̂ðk̂ � ~w6

1 Þ�ðk � ~w7
2 Þ;

(3)

where the caret denotes the unit vector, ~w6ðkÞ is the Fourier

transform of w6; ~w6
1 denotes ~w6ðk1Þ; xk ¼ VAkz is the

frequency of the Alfv�en wave, dF k
1;2 � d3k1d3k2dk�k1�k2

;
and dk�k1�k2

� dðk� k1 � k2Þ is the Dirac delta function.

Incompressible anisotropic MHD turbulence is governed

by the interaction of shear Alfv�en waves, whereas the pseudo

Alfv�en waves (incompressible limit of the slow magnetosonic

wave) play a passive role.22 Therefore, here we will consider

shear Alfv�enic turbulence. We define the unit polarization

vector of the shear Alfv�en wave as êk ¼ k̂? � ẑ (here ẑ

denoted unit vector in z direction and k̂? is the unit vector

parallel to the perpendicular component of the wave vector k)

and introduce the amplitudes of the shear Alfv�en waves /k

and wk as

~w�k ¼ i/kêk; ~wþk ¼ iwkêk: (4)

Equation (3) than reduces to the following equations:

@

@t
þ ixk

� �
/k ¼

ð
Tk

1;2/1w2dF k
1;2; (5)

@

@t
� ixk

� �
wk ¼

ð
Tk

1;2w1/2dF k
1;2; (6)

where Tk
1;2 � ðêk � êk1

Þðk � êk2
Þ is the matrix element of the

interaction.

As it is known,19 for homogeneous turbulence correla-

tion functions of turbulent fields are anti-diagonal in the

wave number space [i.e., h/ðk1Þ/ðk2Þi � dðk1 þ k2Þ], and

therefore for second order correlation functions we have

h/k/k0 i ¼ 4E�k dkþk0 ; (7)

hwkwk0 i ¼ 4Eþk dkþk0 ; (8)

h/kwk0 i ¼ 2Qkdkþk0 : (9)

Here E6
k are the spectral energy densities of the counterpro-

pagating Alfv�en waves (henceforth we omit background den-

sity, q, in all equations) and angle brackets denote ensemble

averages. The residual energy spectral density is the real part

of the cross correlation ER
k ¼ Re½Qk�, and the imaginary part

ES
k ¼ Im½Qk� represents the antisymmetric part of the cross

correlation.9

A dynamical equation for E6
k derived using Eqs. (5) and

(6) will contain the terms of the form h/1w2wki, i.e., the third

order correlators. The time evolution equation for the third

order correlators in turn will contain the forth order correlators

and so on. Therefore some closure approximation is needed to

derive the closed set of the dynamical equations. Goldreich

and Sridhar22 studied strong critically balanced MHD turbu-

lence using EDQNM19 approximation. The key idea of this

method is the quasi-normality assumption,18 which implies

that the relation between the forth order correlators of the tur-

bulent fields with the second order correlations are that of

Gaussian random variables. In addition these authors assumed

that the residual energy is zero, i.e., that there is no correlation

between / and w fields. Under these assumptions Goldreich

and Sridhar22 showed that strong, critically balanced MHD

turbulence in the plane perpendicular to the mean magnetic

field follows Kolmogorov’s scaling, i.e., two dimensional per-

pendicular energy spectrum E6ðk?Þ ¼
Ð

E6
k dkk in the inertial

interval is E6ðk?Þ � k
�8=3
? .

Our approach is quite different from that of Ref. 22. We

derive the governing equation for the residual energy and

study its dynamics by treating the residual energy as a pas-

sive admixture, i.e., neglecting its feedback on the dynamics

of E6
k . This approach is valid at least for the situations where

residual energy spectral density is small relative to that of

the wavefield ER
k � E6

k .

According to Eqs. (5) and (6) we have the following

equation for the mixed second order correlation function:

@th/kwk0 i ¼ 2@tQkdkþk0 ¼ �iðxk � xk0 Þh/kwk0 i

þ
ð

Tk
1;2h/1w2wk0 idF k

1;2 þ
ð

Tk0

1;2h/2w1/kidF k0

1;2:

(10)

Combining Eqs. (5) and (6) for third order correlation

function we have

@th/1w2wki ¼ �iðx1 � x2 � xkÞh/1w2wki

þ
ð

T1
3;4h/3w4w2wkidF 1

3;4

þ
ð

T2
3;4hw3/4/1wkidF 2

3;4

þ
ð

Tk
3;4hw3/4/1w2idF k

3;4: (11)

Using quasi-normal approximation to express fourth order

correlation functions by the second order correlations (h/1

/2/3/4i¼h/1/2ih/3/4iþh/1/3ih/2/4iþ h/1/4ih/2/3i),
and using Eqs. (7)–(9) and taking into account that for homo-

geneous turbulence h/1w2wki � dk1þk2þk, we have

ð@t þ 2ix1Þh/1w2wki ¼ dk1þk2þk½16Tk
2;1E�1 ðEþ2 � Eþk Þ

þ 8ðT1
2;kQ	2Eþk � Tk

1;2Q	kEþ2 Þ
þNLðQ;QÞ: (12)
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Here NL(Q, Q) denotes all nonlinear terms proportional to

QkQ1;2 and asteric denotes complex conjugation. Because

here we study the case jQkj � E6
k this term will be omitted

in further analysis.

In accordance with standard EDQNM technique (e.g.,

Refs. 19 and 22) we add linear demping term g�1 h/1w2wki
(where g�1 is so-called eddy damping rate) to the left hand

side of Eq. (12). Stationary solution of the obtained equa-

tion is

h/1w2wki ¼ 16H�1 Tk
2;1E�1 ðEþ2 � Eþk Þdk1þk2þk

þ 8H�1 ðT1
2;kQ	2Eþk � Tk

1;2Q	kEþ2 Þdk1þk2þk: (13)

Here H6
k ¼ 1=ðg6

k 72ixkÞ. The first term on the right hand

side of Eq. (13) is identical to the expression of the third

order mixed moment derived in Ref. 22, where MHD turbu-

lence with zero cross correlation (Qk ¼ 0) was studied. The

second term on the right hand side of Eq. (13) is the term

related to the nonzero cross correlation.

Substituting Eq. (13) into Eq. (10) after simple manipu-

lations we derive the following dynamical equation for the

residual energy spectrum and its complex counterpart:

@tQk þ 2ixkQk ¼ 8

ð
dF k

1;2Tk
1;2Tk

2;1 � ½H�1 E�1 ðEþ2 � Eþk Þ

þ ðHþ1 Þ
	Eþ1 ðE�2 � E�k Þ� þ NL1ðE6;QÞ;

(14)

where NL1ðE6;QÞ denotes all nonlinear terms proportional

to the products E6Q and asteric stands for the complex

conjugation.

For further simplification of this equation we will make

several assumptions: (i) We consider the balanced case, i.e.,

MHD turbulence with zero cross helicity (Eþk ¼ E�k ;

gþk ¼ g�k ¼ gk); (ii) we assume critically balanced strong

MHD turbulence, i.e., assume that linear (sl � VAkk) and

nonlinear (snl) timescales are of the same order of magni-

tude. The critical balance condition leads to the scaling rela-

tion between characteristic longitudinal and transverse scales

of turbulent wave packets kk ¼ f ðqÞ � q� , where q is the

perpendicular component of the wave vector. For the eddy

damping rate we have22 gk ¼ g0q2½kkEðkk; qÞ�1=2
. In the con-

text of Eq. (14) this means that (for details see Eqs. (40)-(43)

of Ref. 22)
Ð

dkkE
6
k Re½Hk� ¼ aEðqÞ=gðqÞ, where gðqÞ

�gðkkðqÞ; qÞ¼ g0q2½f ðqÞEðf ðqÞ; qÞ�1=2 ¼ bq2½EðqÞ�1=2
. Here

a and b are the positive constants of order unity; (iii) in ac-

cordance with the Goldreich-Sridhar model (see Eq. (36) of

Ref. 22) we assume that the Fourier spectra E6
k are symmet-

ric functions in the wave number space, i.e., we assume

E6ðkk; qÞ ¼ E6ð�kk; qÞ; and (iv) we assume that the turbu-

lence is axially symmetric, i.e., EðqÞ ¼ EðqÞ. Integrating Eq.

(14) with respect to kk, taking into account that Tk
1;2 does not

depend on kk, and noting that due to the symmetry property

E6ðkk; qÞ ¼ E6ð�kk; qÞ imaginary part of the first term on

the right hand side of the equation is zero, for two dimen-

sional spectrum Qq ¼
Ð

dkkQk (similarly, two dimensional

spectra of the residual energy ER
q and its complex counterpart

ES
q are defined as ER;S

q ¼
Ð

dkkE
R;S
k ) we obtain

@tQq þ 2i

ð
dkkxkQk

¼ a
ð

Tk
1;2Tk

2;1

E1ðE2 � EqÞ
g1

dGq
1;2 þ NL2ðE6;QÞ; (15)

where dGq
1;2 � d2q1d2q2dq�q1�q2

. In derivation of the first

term on the right hand side of Eq. (15) we used the identityÐ
dkkdk1kdk2kdkk�k1k�k2kH

�
1 E�1 Eþ2 ¼ aE�1 Eþ2 =g�1 . The second

term on the rhs of Eq. (15) is nonlinear term obtained after

the integration of the corresponding term of Eq. (14).

Our main interest here is to study the first term on the

rhs of Eq. (15) which can result in the production of residual

energy even if it is zero initially. The matrix element of

interactions can be expressed as

Tk
1;2 � ðêk � êk1

Þðk � êk2
Þ ¼ q cos h1 sin h2;

Tk
2;1 ¼ �q cos h2 sin h1;

(16)

where h1;2 are the angles between ðq1; qÞ and ðq; q2Þ, respec-

tively. Noting also that

q1 sin h1 ¼ q2 sin h2;

q1 cos h1 ¼ q� q2 cos h2;
(17)

the first term I on the rhs of Eq. (15)

I � 16a
ð

Tk
1;2Tk

2;1

E1ðE2 � EqÞ
g1

dGq
1;2; (18)

can be expressed as a difference of two integrals ð1=16aÞI
¼ I1 � I2, where

I1 ¼
ð

dGq
1;2 sin2 h2 cos2 h2

q2q2
2

q2
1g1

E1ðE2 � EqÞ; (19)

I2 ¼
ð

dGq
1;2 sin2 h2 cos h2

q3q2

q2
1g1

E1ðE2 � EqÞ: (20)

Integral I1 coincides with the integral which describes the

temporal evolution of the energy density (Eq. (45) of Ref. 22)

and therefore is zero for stationary critically balanced turbu-

lence. We therefore only need to consider I2. Performing inte-

gration with respect to the q1, introducing new variable

r ¼ q2=q, and taking into account that Eq � q�l and conse-

quently g1 � q
2�l=2
1 , where for the GS model l ¼ 8=3, Eq.

(20) can be expressed as

I2 � q2�3l=2

ð1
0

drr2ðr�l � 1Þ

�
ð2p

0

dh2 sin2 h2 cos h2

ð1þ r2 � 2r cos h2Þ2þl=4
: (21)

The transformation r ! 1=r converts the integral over the

interval ½1;1� to an integral over the interval [0,1]. Thus,
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I2 � q2�3l=2

ð1

0

drðr2 � r3l=2Þðr�l � 1Þ

�
ð2p

0

dh2 sin2 h2 cos h2

ð1þ r2 � 2r cos h2Þ2þl=4
: (22)

It is straightforward to show that this integral is always posi-

tive. Indeed, for any fixed value of r and any h2 ¼ h0 such

that cos h0 < 0, the contribution to the integral of the vicinity

of this point ðr; hÞ is always less than contribution of the vi-

cinity of the point ðr; p� h0Þ and therefore I2 > 0. This is

illustrated in Figure 1. The continuous line is the integrand of

Eq. (22) as a function of h plotted in the interval ½0; 90
� for

r¼ 0.3. The dotted line is the absolute value of the integrand

as a function of 180
 � h plotted in the interval ½90
; 180
�.
We can see that the positive value of the integrand in the

interval ½0; 90
� is always greater than the negative value at

the corresponding point in the interval ½90
; 180
�.
We have shown that the nonlinear “production” term in

the equation of the residual energy for stationary critically

balanced turbulence is always negative and consequently,

even if the residual energy is absent initially, it will be gen-

erated by the strong nonlinear interactions of Alfv�en waves.

In the derivation above we assumed that the turbulence is

balanced, i.e., assumed that cross helicity is equal to zero.

The formalism developed in the previous chapter can be

straightforwardly extended for the case in imbalanced MHD

turbulence if the energy spectra of the counter propagating

Alfv�en waves follow Kolmogorov scaling as predicted by

model of imbalanced MHD turbulence developed in Ref. 23.

Therefore, obtained result is quite general and will thus be a

feature of any study or simulation of strong Alfv�enic MHD

turbulence.

In addition, Eq. (15) has an important corollary. For

symmetric spectra [E6ðkk; qÞ ¼ E6ð�kk; qÞ] the production

term is real, and therefore there can be no direct generation

of the antisymmetric part of the cross correlation ES
k. More-

over, for the symmetric energy spectra, the generation term

of the residual energy [the real part of the first term on the

rhs of Eq. (14)] is also symmetric and therefore generated

spectrum of the residual energy is also symmetric. If so, the

imaginary part of Eq. (15)

@tES
q þ 2

ð
dkkxkER

k ¼ Im½NL2ðE6;QÞ� (23)

shows that even after the residual energy is generated, no ES
q

will be generated at all. Indeed, it is straightforward to show

that both second term on the lhs as well as the nonlinear term

on the rhs of Eq. (23) proportional to E6ER are identically

zero for the symmetric spectra [E6;Rðkk; qÞ ¼ E6;Rð�kk; qÞ].
After generation of the residual energy the other terms

of Eq. (15) become non-zero, and the balance among differ-

ent terms in Eq. (15) should lead to the stationary state of the

residual energy. In Ref. 14 it was suggested that the station-

ary solution of the residual energy is provided by the balance

between the production and “dissipation” terms [second term

on the rhs of Eq. (15), NL2ðE6;QÞ]. Our analysis supports

this idea. Namely, it shows that this is indeed the case,

because for strong critically balanced MHD turbulence the

linear term [the second term on the lhs of Eq. (15)] is identi-

cally zero at least for symmetric spectra. Therefore station-

ary state can be reached only due to the balance between

generation and dissipation terms.

It has to be noted also that because nonlinear interac-

tions in MHD turbulence conserve total energy, it is clear

that excessive magnetic energy is generated on the expense

of the kinetic energy.

Obtained results are in good agreement with the solar

wind observations (e.g., Ref. 9), which show that in the iner-

tial range of the solar wind turbulence there is significant

amount of the negative residual energy [2ER
k=ðEþk þ E�k Þ

� �0:4] whereas observed level of ES
k is negligible, thus

showing that the influence of the linear term (which in general

case, for non-symmetric spectra, could cause mixing of the re-

sidual energy and its complex counterpart) is negligible.

III. DISCUSSION

Frisch et al.13 studied solutions of ideal incompressible

MHD in statistical equilibrium using standard methods of

statistical mechanics. The absolute equilibrium state is

described by the Gibbs’ distribution. The authors derived the

spectrum of the magnetic and kinetic energies in the absolute

equilibrium state and showed that the magnetic energy is

always greater than or equal to the kinetic energy. Therefore

one can expect that this fact is related to the similar feature

observed in the non-equilibrium case of developed turbu-

lence.1 Our analysis shows that this is not exactly the case.

Indeed, in the case of the absolute equilibrium state, the

magnetic energy dominates the kinetic energy as a conse-

quence of nonzero magnetic helicity. If magnetic helicity is

absent then the spectrum of the residual energy is identically

zero.13 On the other hand, our analysis shows that the gener-

ation of negative residual energy is not directly related to the

presence/absence of the magnetic helicity in the system.

Grappin et al.14 were first to derive the dynamical equa-

tion for the residual energy for strong isotropic MHD turbu-

lence. The structure of their equation is quite similar to our

Eq. (14) in the sense that it also contains a “generation term”

FIG. 1. The integrand of Eq. (22). See text for details.
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(proportional to the Ek1
Ek2

) and a “dissipation term” (propor-

tional to the Ek1
ER

k). The stationary solution of this equation

was found in Ref. 14 assuming the balance between the gen-

eration and the dissipation terms. Taking into account that in

the isotropic case, the dissipation term should be dominated

by nonlocal interactions (related to the Alfv�en effect), this

kind of analysis led these authors to the conclusion that in

the stationary state, the one dimensional residual energy

spectrum should be ERðkÞ � k�2. Applying a similar scaling

analysis to Eq. (15) and noting that in the case of critically

balanced MHD turbulence both the generation and the dissi-

pation terms are dominated by the local interactions, one can

readily derive that the stationary solution should have the

same spectral index as the total energy, i.e., –5/3 for the one

dimensional spectrum. Detailed analysis of the residual

energy spectrum predicted by the Eq. (15) as well as compar-

ison with the solar wind observations and recent numerical

simulation will be presented elsewhere.

Recently, Ref. 17 studied the dynamics of the residual

energy in weak MHD turbulence using a simplified model of

weakly colliding Alfv�en waves and demonstrated that as a

result of these interactions, negative residual energy is gener-

ated. Solar wind in situ observations,6–11 where MHD turbu-

lence is known to be strong, as well as numerical simulations

of strong MHD turbulence12,15 show that in the inertial range

of turbulence the residual energy is always negative. Thus,

our analytical results offer a natural explanation of the

observed residual energy found in the solar wind and numer-

ical simulations of the strong MHD turbulence.

IV. CONCLUSIONS

In this paper we derive the equation governing evolution

of the residual energy for strong, critically balanced MHD

turbulence in the framework of the EDQNM approximation.

We show that in stationary critically balanced MHD turbu-

lence, the nonlinear interaction of Alfv�en waves always

generates negative residual energy. Since in strong critically

balanced MHD turbulence is dominated by perpendicular

cascade and follows Kolmogorov phenomenology, we can

conclude that the derived feature of the residual energy is a

consequence of only the nonlinear interaction of Alfv�en

waves, i.e., formally speaking the specific feature of the ma-

trix element of interaction T12.
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