
Velocity space evolution of a minority energetic electron population undergoing the
anomalous Doppler instability
W. N. Lai, S. C. Chapman, and R. O. Dendy 
 
Citation: Physics of Plasmas 22, 112119 (2015); doi: 10.1063/1.4936101 
View online: http://dx.doi.org/10.1063/1.4936101 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/22/11?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
On the quantum Landau collision operator and electron collisions in dense plasmas 
Phys. Plasmas 23, 032706 (2016); 10.1063/1.4944392 
 
Relativistic solutions for one- and two-dimensional space-charge limited current in coaxial diode 
Phys. Plasmas 20, 053103 (2013); 10.1063/1.4804403 
 
Quasilinear model for energetic particle diffusion in radial and velocity space 
Phys. Plasmas 20, 042510 (2013); 10.1063/1.4802808 
 
Transverse instability and magnetic structures associated with electron phase space holes 
Phys. Plasmas 18, 032104 (2011); 10.1063/1.3561796 
 
Nonlinear analysis of electron cyclotron maser based on anomalous Doppler effect 
Phys. Plasmas 14, 053108 (2007); 10.1063/1.2734569 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  217.112.157.113 On: Thu, 07 Apr

2016 09:55:52

http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/141343812/x01/AIP-PT/Pfeiffer_PoPArticleDL_040616/15.12.09_3_Prod_1640x440_EN_USA.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=W.+N.+Lai&option1=author
http://scitation.aip.org/search?value1=S.+C.+Chapman&option1=author
http://scitation.aip.org/search?value1=R.+O.+Dendy&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4936101
http://scitation.aip.org/content/aip/journal/pop/22/11?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/23/3/10.1063/1.4944392?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/5/10.1063/1.4804403?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/4/10.1063/1.4802808?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/18/3/10.1063/1.3561796?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/14/5/10.1063/1.2734569?ver=pdfcov


Velocity space evolution of a minority energetic electron population
undergoing the anomalous Doppler instability

W. N. Lai,1 S. C. Chapman,1,a) and R. O. Dendy1,2

1Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry,
United Kingdom
2CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom

(Received 6 July 2015; accepted 3 November 2015; published online 30 November 2015)

The kinetic evolution in velocity space of a minority suprathermal electron population that is

undergoing the anomalous Doppler instability (ADI) is investigated using the results from fully

nonlinear numerical simulations that self-consistently evolve particles and fields in a plasma.

Electron trajectories in phase space during different stages of the ADI are captured, and are

analysed in relation to the characteristics of the excited electric fields and of the overall distribution

of particles. For some electrons, trapping and mirroring effects are observed during the saturation

phase. A relationship between the second order moments of the perpendicular electron distribution

function and time is established, and is used to investigate the range of applicability of analytical

approximations drawn from classical theory, that involve a quasilinear wave-driven diffusion

operator. [http://dx.doi.org/10.1063/1.4936101]

I. INTRODUCTION

The anomalous Doppler instability (ADI)1–16 is a key

collective relaxation mechanism for minority suprathermal

electron populations in magnetically confined fusion plas-

mas. Through the ADI, excess parallel kinetic energy is

converted into perpendicular kinetic energy together with the

field energy of excited waves. This rests on wave-particle

resonance between electrons and waves that satisfy the

anomalous Doppler resonance criterion

xk þ Xce ¼ kkvk; (1)

where xk is the frequency if the excited waves, Xce is the

electron cyclotron frequency, kjj is the wavenumber parallel

to the external magnetic field and vjj is the parallel compo-

nent of the velocity of the resonant electrons. Relaxation of

energetic electron populations through the ADI is of substan-

tial practical interest for contemporary tokamak plas-

mas.10–12,17,18 Most recently, it appears that the ADI is

playing a key role in the fast evolution of the electron popu-

lation during the early stages of edge localised modes

(ELMs) in MAST.19 The ADI is also believed to operate in

space plasmas,15,20 and the ADI is a close relative of the

instability at the inner Lindblad resonance in galactic

dynamics.21

Early analytical studies of the ADI rested on the proper-

ties of the linear growth rate.8 These were sometimes com-

bined22 with model quasilinear wave-driven diffusion

operators, to provide an indicative guide to the evolution in

velocity space of the energetic electron population. It has

only recently become possible to transcend the limitations of

this approach. A particle-in-cell (PIC) code23 was used9 to

calculate the fully self-consistent nonlinear evolution of

kinetic electron dynamics and electromagnetic fields under-

going the ADI for tokamak-relevant parameter regimes. This

study provided a systematic account of the extent to which

the linear analytical theory of ADI growth provides a guide

to the fully nonlinear ADI, and of the character of the waves

that are excited.

In the present paper we therefore turn to the second

aspect of ADI physics that is important for experimental

interpretation: the evolution in time of the distribution of

energetic electrons in velocity space, which takes the form

of a fan-like spreading by which a “tail,” oriented initially

along the magnetic field direction, becomes a “pancake.” For

experimental applications of ADI theory, it would be helpful

to identify how the fully self-consistent relativistic nonlinear

PIC simulation of the ADI diverges from a quasilinear

approximation.

To investigate these questions we use a fully relativistic

PIC code which self-consistently solves the Lorentz-

Maxwell system of equations for many millions of kinetic

electrons together with the full vector electric and magnetic

fields. Our simulations have one spatial dimension x, which

can be oriented arbitrarily with respect to the direction of the

background magnetic field, and three velocity co-ordinates

for the particles. A consequence of the fact that PIC codes

operate at the level of description of kinetic particles and

fields is that there are no ab initio assumptions about the

presence or character of wave modes, if any. Instead the

character of any waves is inferred from the simulation

results, by means of spatio-temporal Fourier transforms of

the electric and magnetic fields that arise. Similarly, no

explicit wave-particle interactions are imposed at the PIC

level of description of the plasma. Wave-particle interactions

are higher order phenomena, which are inferred from the

simulation results using ensembles of particle orbits, the par-

ticle distribution function, and the spatio-temporal Fourier

transforms of the electric and magnetic fields. In our simula-

tions here, as in Ref. 9, we find empirically that Landau

damping is the dominant among the damping mechanisms

that are possible in principle,25 as is assumed in mosta)Electronic mail: S.C.Chapman@warwick.ac.uk
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analytical treatments. Again empirically, particles at anoma-

lous Doppler wave-particle resonance drive the instability.

As in Ref. 9, we use the EPOCH (Extendable PIC Open

Collaboration) PIC code23,24 which has been extensively

benchmarked in nonlinear plasma physics regimes by its

large user community. In general PIC code benchmarking in

fully nonlinear regimes is achieved by simulating structures

such as shocks and solitons for which analytical solutions

exist, and by varying cell sizes and particle step lengths, and

iterating until convergence is obtained. The self-consistent

phase space dynamics of each kinetic particle is evolved in

combination with the spatiotemporal evolution of the electric

and magnetic fields, with periodic boundary conditions. Grid

cell sizes are such that the simulations fully resolve the

lengthscales that characterise electron dynamics, including

Debye length and gyro-radius. The details of the simulation

and initial setup are given in Ref. 9, and the initial conditions

are similar to those in Ref. 9 with a few changes. The simula-

tion results here were obtained using tokamak-relevant pa-

rameters that would generically characterise, for example,

the outer region of a medium-size tokamak; see, for example,

the profiles for Tore Supra shown in Fig. 4 of Ref. 26. The

initial bulk electron and ion temperatures are set equal at

1.0 keV, and the value of the bulk electron number density is

1.0� 1019 m�3. The electron tails are mildly relativistic. The

parallel velocity of the suprathermal electron tail distribution

extends up to 2.5� 108 ms�1. In this mildly relativistic re-

gime, the flat tail electron distribution in velocity space is

monotonically decreasing in momentum space. We recall

that, distinctively among collective instabilities, the ADI can

occur in the absence of a positive slope of the particle distri-

bution anywhere in velocity space.

II. QUASI-LINEAR ANALYSIS

The quasilinear equation for wave-particle resonant dif-

fusion in velocity space for a uniform magnetised plasma

was first derived by Kennel and Engelmann from the Vlasov

equation.27 The relativistic generalisation of the quasilinear

model is due to several authors, see for example, the works

by Kulsrud and Ferrari28 and Stix29 and references therein.

In the present paper, we will compare the results of direct

numerical PIC simulation of the fully nonlinear ADI with

the output from two widely used quasi-linear equations.30–36

In regimes where the quasilinear approach is found to ap-

proximate well to the PIC code, it can reasonably be adopted

in models for use in experimental interpretation. The first

quasi-linear equation of interest is adopted from Ref. 32

@f

@t
¼
ð

d3k
lXce

v?

@

@v?
DP̂f
� �

þ @

@vk
ðkkDP̂f Þ

" #
: (2)

Here f is the electron distribution function; Xce is the electron

cyclotron frequency; l is the dominant cyclotron resonant

harmonic (l¼�1 for the ADI); (vjj, v?) are the parallel and

perpendicular velocity with respect to the magnetic field

direction; and kjj is the wavenumber parallel to the external

magnetic field. The operator P̂ is the pitch angle gradient

operator, and is defined as

P̂ ¼ lXce

v?

@

@v?
þ kk

@

@vk
: (3)

The coefficient D can be expressed as

D ¼ pe2

m2
0

jEkk j
2

x2
k

X1
l¼�1

d xk � lXce � kkvk
� �

jêk � Vj2; (4)

where jEkk j is the electric field amplitude of the waves along

the external magnetic field. In Eq. (4), m0 and e are the elec-

tron rest mass and charge, respectively, xk is the angular fre-

quency of the wave, êk is the unit directional vector along

the wave vector k, and the vector V is defined as

V ¼

1

2
v? ei/Jl�1 zð Þ þ e�i/Jlþ1 zð Þ
� �

1

2i
v? ei/Jl�1 zð Þ þ e�i/Jlþ1 zð Þ
� �

vkJl zð Þ

0
BBBBB@

1
CCCCCA: (5)

Here / is the phase of circularly polarised waves, Jl is the

Bessel function of order l, and the argument of the Bessel

function is z¼ k?v?/Xce. The delta function in the operator

D in Eq. (4) represents wave-particle interactions, which

pick out the parallel particle velocity vjj that resonates with

the waves. The second quasilinear equation of interest, Eq.

(6),37,38 is similar to Eq. (2) apart from a few differences.34,35

First, kjj is not subject to the differential operator in the sec-

ond term of Eq. (2); and second, Eq. (6) considers the relativ-

istic limit. For wave-particle interactions, kjj usually has a

strong dependence on vjj, however it will be shown in a later

section that for the relativistic case and under certain

assumptions, such dependence is unimportant. The second

quasilinear formulation is written as

@f

@t
¼
ð

d3kP̂RDRP̂Rf ; (6)

where the operator P̂R has a slightly different definition

from that of P̂ given in Eq. (3)

P̂R ¼
lXce

v?

@

@v?
þ

kk
c
@

@vk
; (7)

where c is the Lorentz factor. The function DR is defined

below, and differs slightly from D given in Eq. (4)

DR ¼ pe2
X1

l¼�1
p2
?
jWl;kj2

x2
k

d xk � lXce � kkvk
� �

: (8)

Here jWl;kj2 is defined as

jWl;kj2 ¼
����Ek?1

l

z
Jl zð Þ þ iEk?2

J0l zð Þ þ
pk
p?

EkkJl zð Þ
����
2

; (9)

where ðEk?1
;Ek?2

;Ekk Þ are the electric field components per-

pendicular and parallel to the magnetic field; (pjj, p?) are the

parallel and perpendicular momentum; J0lðzÞ denotes the
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derivative of the Bessel function; and the argument z has the

same definition as before.

Considering electrostatic waves and assuming that

kk@f=@vk � ðXce=v?Þ@f=@v? and vjj ’ c, Eq. (6) can be sim-

plified to Eq. (10) below34

@f

@t
¼ 1

p?

@

@p?

Dp

p?

@

@p?
f : (10)

Here the diffusion coefficient Dp is given by

Dp ¼
ð

d3k
pm2

0e2X2
ce

k2

X1
l¼�1

jEkkJl zð Þj2d x� kkvk � lXce

� �
:

(11)

The assumptions leading to Eqs. (10) and (11) are applicable

to our simulations below, since kjjv?/Xce� 1 and @f/@vjj� @f/
@v? for the initial flat tail suprathermal electron distribution.

The diffusion coefficient Dp is still function of v?, therefore

we expand the Bessel function up to the first order so that

Eq. (10) becomes

@f

@s
¼ 1

p?

@

@p?
p?

@

@p?
f ; (12)

and the normalised time s is defined as

s ¼
ðt

0

dt0
pe2

4

ð
d3k

k2
?

k2
jEkk j

2d xk þ Xce � kkvk
� �

: (13)

The structure of this paper is as follows. First, we investigate

the applicability of the assumptions of the quasilinear theory

from the perspective of single particle dynamics as revealed

by the fully nonlinear selfconsistent PIC simulations. We

then establish a relation between the second order moments

of the perpendicular electron distribution function and time,

with diffusion coefficients obtained from analytical quasilin-

ear expressions that use the analytical linear growth rate for-

mulated in Ref. 8.

III. RESULTS

A. Trajectories of electrons undergoing ADI

Figure 1 shows four examples of the trajectories, in

(pjj, p?) momentum space, of tail electrons undergoing the

ADI. Initially the electrons have small pitch angles, and they

move to higher p? at later times. Particles undergoing the

ADI lose energy to the excited wave fields, while simultane-

ously transforming parallel into perpendicular kinetic

energy. This is reflected in the initial trajectories of all four

particles in Fig. 1, which follow the solid black curve repre-

senting the resonance contour, which is the energy conserva-

tion contour of an electron taking into account the energy

transferred to the excited wave during the ADI in the rest

frame of the bulk electrons. During the linear stage of the

ADI, which is relevant to this stage of the phase space evolu-

tion of the electrons, it is known4,8 that the ratio of the loss

in parallel kinetic energy of an electron DEjj to its gain in

perpendicular energy DE? is (Xceþxk)/Xce (we note that

this ratio is found not to apply in the fully nonlinear regime

the ADI, see Fig. 10 of Ref. 9). By taking the ratio of the ki-

netic energy loss of an electron, DE¼DEjj �DE?, to the

parallel kinetic energy loss DEjj, we have

DE

DEk
¼

m v?d cv?ð Þ þ vkd cvkð Þ
� �

mvkd cvkð Þ
¼ xk

Xce þ xk
: (14)

Rearranging the above expression gives the resonance

contour for electrons undergoing the ADI27

FIG. 1. Panels show trajectories of

four different electrons chosen from

the suprathermal population, in (pjj,
p?) momentum space. The colour of

dots represents the time in units of cy-

clotron periods, blue corresponding to

earlier times and red to later. The black

curves plot the contour of the anoma-

lous Doppler resonance defined by Eq.

(15), where the value of C is different

in each panel.
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Xce

Xce þ xk

� �
p2
k þ p2

? ¼ C; (15)

where C is a constant. From Fourier analysis of the electric

field, it is shown in Fig. 2 that xk’ 0.35Xce is the dominant

frequency of the excited wave for the parameter values of

the simulation. In terms of the linear dispersion relation, this

value of xk corresponds to the lower electrostatic mode as

defined in Ref. 25.

The electron trajectories shown in Fig. 1 can broadly be

characterised into three different stages. In the first stage,

which lasts for the first hundred cyclotron periods, the elec-

trons have no obvious net displacement in momentum space.

This phase corresponds to panels (a)–(c) of Fig. 2 in Ref. 9,

during which there is significant excitation of electrostatic

waves, see panels (a)–(c) of Fig. 3 of Ref. 9. In the second

stage, which lasts several hundred cyclotron periods, the

electrons follow the resonance contour defined by Eq. (15)

and evolve towards substantially larger p?. This phase corre-

sponds to panels (d)–(f) of Fig. 2 in Ref. 9. Finally, in the

third stage, the electrons deviate from the resonance contour

and, in some cases, mirror back and forth in the pjj direction.

In order to quantify the behaviour of the electrons at dif-

ferent stages, we construct the pdf of Dp?, where Dp? is the

difference in p? between successive time steps, Dt¼ 0.17sce,

computed for 20 macroparticles exhibiting similar trajecto-

ries to the ones shown in Fig. 1. We label this pdf as g(Dp?).

The time evolution of the first three moments of g(Dp?),

namely, its mean, standard deviation and skewness, is shown

in Fig. 3. All three moments grow steadily during the early

stages of the ADI and peak at approximately 750sce. This

reflects the fact that the pdf of Dp?, g(Dp?), slowly becomes

positively skewed with net positive mean under the effect of

the ADI, while also becoming more spread out. This corre-

sponds to the linear phase of the ADI, during which the elec-

trons mostly follow the resonance contour as shown in Fig.

1. The ADI then enters the saturation phase at around 750sce,

after which the mean and skewness decline.

We now turn to the electron mirroring during the satura-

tion phase of the ADI, which is observed in three of the four

electron trajectories in Fig. 1. It is helpful to plot the trajec-

tory of a single electron (computationally a macroparticle)

overlaid on the electron distribution function in (vjj, x) phase

space, as shown in Fig. 4. The velocity of electrons under the

influence of each Fourier component of an oscillating elec-

tric field varies as exp i½kx� xkt�, since waves with a broad

FIG. 2. Time evolution of energy density and frequency structure of the ADI-

excited electric fields. Top panel shows the logarithmic electric field amplitude

squared for wavenumber, kvB/Xce¼ 0.1245, plotted against time. Dotted blue

lines mark the times, t¼ 300sce and t¼ 750sce, that separate the three stages of

the ADI mentioned in Section III; here sce denotes the electron cyclotron pe-

riod. A. Bottom panel shows the logarithmic density plot of electric field am-

plitude (red corresponds to higher field amplitude and blue to lower field

amplitude) in frequency-time space, jEkðx; tÞj, for a particular wavenumber

k?vB/Xce¼ 0.1225, where vB is the thermal velocity of the bulk electrons. The

time axes of both panels are in units of the cyclotron period sce.

FIG. 3. Time evolution of the moments of the pdf g(Dp?), where Dp?(tn)

¼ p?(tn)� p?(tn�1), and tn� tn�1¼ 0.17sce. Mean, standard deviation and

skewness are shown from top to bottom. The pdf is generated from 20 mac-

roparticles exhibiting similar trajectories to those shown in Fig. 1. The per-

centage error on these quantities can be estimated as �100�N�1=2� 25%.

FIG. 4. Trapping and bouncing of an electron with mean pitch angle of 0.9

during the saturation phase of the ADI. The background of this figure is the

tail electron distribution in (vjj, x) space, where x is the position of the elec-

trons, and the white trace represents the position of a test electron. The col-

our of the background represents the concentration of electrons in (vjj, x)

space; red and blue correspond to high and low density respectively. This

test electron corresponds to the particle in the top-right panel of Fig. 1. The

background is captured at 830sce and the trajectory of the electron is plotted

from t¼ 660 – 1000sce.
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band of wavenumbers k are excited during the ADI. It fol-

lows that there is a concentration of particles in (vjj, x) space,

such that the quasilinear approximation is no longer valid.

The electron trajectories become stochastic and can “jump”

between resonances in the velocity space. The background

of Fig. 4 is a snapshot of the tail electron distribution at

830sce and the white trace is the trajectory of the electron in

(vjj, x) space during the time interval from 660sce to 1000sce.

Figure 4 suggests that we should expect an electron to

exhibit this kind of mirroring behaviour if it enters into the

high concentration band, with vjj ’ (1.3–1.7)� 108 ms�1

’ (7.5–10)vB, where vB is the thermal velocity of the bulk

electron population. This would also explain why no such

behaviour is observed in the bottom-left panel in Fig. 1, for

which the velocity of the electron remains outside the high

concentration band throughout the simulation. Physically,

the distribution of suprathermal electrons in (vjj, x) phase

space, in this nonlinear phase of the ADI, must correlate

with the parallel phase velocity and spatial location of the

excited fields which are supported by these electrons.

Trapping and mirroring require approximate resonance

between vjj and phase velocity, together with significant field

amplitudes. The correlation seen in Fig. 4, between the mir-

roring electron trajectory and the band of high concentration

of tail electrons, is thus physically consistent.

B. Quasilinear diffusion

We have seen in the previous subsection A that electron

trajectories in (v?, vjj) space roughly follow the resonance

contours defined by Eq. (15), at least until trapping occurs.

FIG. 5. Variance of the perpendicular momentum distribution plotted against normalised time s, defined by Eq. (13), for four different parallel momenta in the

electron tail, showing approximately quasilinear spreading. Blue dots are the estimated variances at different pjj, black dashed lines represent the error bands,

and red lines show the least squared linear fit.
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In this section, we focus on the macroscopic behaviour of

the perpendicular momentum distribution of tail electrons at

a specific parallel momentum ps, which can be expressed as

~f ðp?; psÞ ¼ lim
Dp!0

ðpk¼psþDp

pk¼ps�Dp

f ðp?; pkÞdpk: (16)

From Eq. (12), we would expect the second order moments,

r2ðpsÞ ¼
Ð

dp?ðp? � �p?Þ2 ~f ðp?; psÞ to increase linearly with

the normalised time s. Figure 5 shows the second order

moments of the perpendicular distribution function, ~f ,

plotted against normalised time s for four different parallel

momenta ps. The black dashed line represents the error

bounds of the variances and the red lines are the least

squared linear fits to the variances. The second order

moments of ~f are calculated from the variances of test par-

ticles and the error bars are estimated through bootstrapping,

these test particles are samples of the electron distribution f
in momentum space. The normalised time in Eq. (13) is

calculated using the analytical growth rates ck as defined in

Ref. 8. These are inserted in the exponential formula for

electric field growth at early times, jEkk j
2 ¼ jE0j2e2ckt, where

the initial electrostatic field energy W0 ¼ 1
2
�0jE0j2 where kB

is the Boltzmann constant and T is the bulk electron

temperature.

The linear fits in Fig. 5 confirm the linear relationship

between the second order moments and the normalised time

s. This is an indication that the simulation results are in good

agreement with the quasilinear equation Eq. (12) for the time

period shown in Fig. 5, which corresponds to 40–70sce in

real time and is equivalent to 1.5–3 e-folding times for the

fastest growing mode. It is also observed that for higher mo-

mentum values, the duration of linear correlation between

variances and normalised time is shorter.

Figure 6 shows the vector field P(pjj, p?, t) at t¼ 500sce,

which is locally defined as the momentum increment

pðtnþ1Þ � pðtnÞ for tnþ1� tn¼ 30sce, in (pjj, p?) space. This

vector field governs how df(pjj, p?) evolves locally with time

in momentum space. It can be observed from the vector field

P that P � jPjê? in the electron tail, where ê? is the unit

vector along the p? direction. This supports the earlier

assumption of the simplified quasi-linear equation, Eq. (12),

that the perpendicular evolution of the distribution function

is dominant in the quasilinear phase.

IV. CONCLUSIONS

We have analysed the evolution of a minority energetic

electron population in phase space under the selfconsistent

action of the ADI. Electron trajectories during different

stages of the ADI are captured and, in the linear stage, these

largely follow the resonance contour. Towards the saturation

phase, stochastic electron motion in momentum space is

observed. This can be explained by the observed excitation

of waves with a broad band of wavenumber k. The relation-

ship between the second order moments of the perpendicular

electron distribution function and time is established. During

the linear phase of the ADI, these are in good agreement

with the quasilinear theory but thereafter, trapping and mir-

roring dynamics come into play.
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