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Suprathermal tails in the distributions of electron velocities parallel to the magnetic field are found

in many areas of plasma physics, from magnetic confinement fusion to solar system plasmas.

Parallel electron kinetic energy can be transferred into plasma waves and perpendicular gyration

energy of particles through the anomalous Doppler instability (ADI), provided that energetic

electrons with parallel velocities vjj � ðxþ XceÞ=kjj are present; here Xce denotes electron

cyclotron frequency, x the wave angular frequency, and kjj the component of wavenumber parallel

to the magnetic field. This phenomenon is widely observed in tokamak plasmas. Here, we present

the first fully self-consistent relativistic particle-in-cell simulations of the ADI, spanning the linear

and nonlinear regimes of the ADI. We test the robustness of the analytical theory in the linear

regime and follow the ADI through to the steady state. By directly evaluating the parallel and

perpendicular dynamical contributions to j � E in the simulations, we follow the energy transfer

between the excited waves and the bulk and tail electron populations for the first time. We find

that the ratio Xce=ðxpe þ XceÞ of energy transfer between parallel and perpendicular, obtained

from linear analysis, does not apply when damping is fully included, when we find it to be

xpe=ðxpe þ XceÞ; here xpe denotes the electron plasma frequency. We also find that the ADI

can arise beyond the previously expected range of plasma parameters, in particular when

Xce > xpe. The simulations also exhibit a spectral feature which may correspond to the

observations of suprathermal narrowband emission at xpe detected from low density tokamak

plasmas. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827207]

I. INTRODUCTION

The anomalous Doppler instability (ADI)1–15 is a key

limiting mechanism for suprathermal tails in the probability

distribution of the component of electron velocity parallel to

the magnetic field direction, vjj, in a plasma. It has been

found in over four decades of experiments in low density

tokamak plasmas4–8,11,14 with both Ohmic and lower hybrid

current drive, and remains topical. For example, the ADI is

believed to explain the recently observed relaxation oscilla-

tions in directional hard X-ray signals emitted by the ener-

getic electron population in the HT-7 tokamak.14,15 These

observations reflect the underlying physics of the ADI,

which involves a shift of energy from parallel to perpendicu-

lar particle motion, accompanied by the excitation of waves

at frequency and wavenumber (x; k) satisfying the anoma-

lous Doppler resonance condition11

x� k � v ¼ nX; (1)

where X is the cyclotron frequency and v is particle velocity,

specifically n ¼ �1 is the ADI. Analytical theory of the lin-

ear ADI confirms that in plasmas, this applies at both the clas-

sical single-particle level12 and the collective level9,10 of

mathematical description. Oscillations in the amplitude of the

directional X-ray signal observed from tokamaks, reported

most recently in Ref. 14, are believed to arise where the

energetic electron tail distribution undergoes repeated cycles

of relaxations through the isotropising effect of the ADI in

its fully nonlinear regime, followed by re-extension of the

tail by the current drive processes. Importantly, the ADI can

occur for tail distributions that are monotonically decreasing

in the vjj direction. In this respect, the ADI differs fundamen-

tally from inverse Landau damping as a limiting mechanism

for tail distributions. Here, we present, for the first time, a

fully nonlinear kinetic treatment of the ADI for the electron

population with parameters and topologies relevant to mag-

netically confinement fusion. By means of a well diagnosed

large-scale particle-in-cell (PIC) code,16 we explore how the

full combined bulk and tail electron velocity distribution,

together with the self-consistently excited electromagnetic

fields, evolve in time and depend on plasma parameters. This

is an essential step towards exploiting the potential of the

anomalous Doppler effect as a spontaneous in situ diagnostic

of tokamak plasma electron populations. It may also contrib-

ute to the diagnostic and design capability for planned beam-

plasma experiments in this area.17,18 The anomalous Doppler

instability is of interest in space plasmas, see for example

Ref. 19, and is closely related20 to the instability occurring at

the inner Lindblad resonance in spiral galaxies.

In this paper, we study the evolution of the combined

bulk and energetic electron distribution, and of the character-

istics of the excited waves, throughout the ADI. We focus
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primarily on flat tail electron distributions, and compare ana-

lytical linear growth rates with simulation results at early

and later times, for different percentages n of energetic elec-

trons and for different magnetic field orientations. We then

track the energy transfer between excited waves and the tail

and bulk electron populations by evaluation of j � E through

and beyond the linear regime.

II. THE LINEAR ANOMALOUS DOPPLER INSTABILITY

We will first use linear theory to establish the regime in

which the ADI will operate in our simulations. The theory of

the ADI can be considered at different levels of description,

quantum,1,3 classical single particle,12 and collective.2,4–10

The conservation of energy between the longitudinal kinetic

energy and the oscillator energy in quantum wave emission

by electrons in a magnetic field in the nonrelativistic limit is

given by

D� ¼ �hxk ¼ Dpjjvjj þ n�hXce; (2)

where Xce ¼ jqejB=me is the electron cyclotron frequency, qe

and me are the electron charge and mass, respectively; and �h
is the reduced Planck’s constant. This can be expressed as

xk � kjjvjj ¼ nXce: (3)

The preceding equation defines the condition for cyclotron

resonances, where n¼ 0 corresponds to the Cerenkov-Landau

resonance, and positive and negative n refer to normal

and anomalous Doppler cyclotron resonances respectively.

When n ¼ �1, the resonant parallel velocity vjj ¼ vAD

¼ ðxk þ XceÞ=kjj. If the suprathermal electron population is

such that there is a finite number of electrons having

vjj � vAD, the ADI will occur provided that other counteract-

ing effects, notably Landau damping, are overcome.

At the single particle level of description using linear

analysis, the energy flows associated with an electron under-

going anomalous Doppler instability in a magnetised plasma

are as follows: from the kinetic energy of motion parallel

to the magnetic field direction, into the kinetic energy of

motion perpendicular to the external magnetic field B and

into wave energy of the resonant excited electrostatic wave,

in the ratio Xce : xpe. The driving contribution to the total

linear growth rate scales with the magnitude of the tail

distribution, integrated over perpendicular velocity, at the

anomalous Doppler resonant parallel velocity. For net linear

growth to exist, the corresponding Landau resonant velocity

of the excited wave must lie beyond the bulk thermal popula-

tion, otherwise linear Landau damping is usually sufficient

to overcome the drive, thereby preventing the instability.

These features carry over into the linear analysis of collec-

tive energy flows calculated from j � E. The rates at which

work is done by the electrostatic field on the components of

electron motion parallel and perpendicular to the magnetic

field, Rjj and R?, are given by the following expressions in

the linear regime:10

R? ¼ j? � E? ¼
jEj2

4p

� �
2cAD

Xce

xpe
; (4)

Rjj ¼ jjj � Ejj ¼
jEj2

4p
2cLB þ 2cLT � 2 1þ Xce

xpe

� �
cAD

� �
: (5)

In the case when the anomalous growth rate, cAD, is greater

than the Landau damping by the tail and bulk populations,

cLT and cLB, it follows that Rjj is negative while R? is posi-

tive. This implies that parallel electron kinetic energy is

transferred to waves propagating in the parallel direction,

which also mediate the transfer of electron parallel kinetic

energy into the perpendicular direction.

For the ADI to occur, it is essential that electron and

ion Landau damping of the resonant wave is weaker than

the driving term. Figure 1 shows the analytical linear

growth rate of electrostatic waves derived from Eq. (A3)

to (A7) for an electron distribution with a flat suprather-

mal tail, represented analytically by Eq. (A2) combined

with

FðvjjÞ ¼
1

vM
; 0 � vjj � vM; (6)

with vM � 17vB; vT? ¼ vB, and Xce=xpe ¼ 1:31. There is a

well-defined region in (k?; kjjÞ space where the ADI occurs.

The boundary at small kjj in Fig. 1 reflects the maximum

velocity at which electrons are present in the tail, whereas

growth at large k is prevented by Landau damping.

In the case of a cold magnetised plasma, there are two

normal modes of electrostatic oscillations, with characteristic

upper and lower frequencies x1 and x2 given by21

FIG. 1. Analytical linear growth rate

of the ADI calculated from Eqs.

(A3)–(A7) for an electron distribution

with a 10% flat tail, shown in: (a) 3D

plot; (b) contour plot, in (kjj; k?) space.

The growth rates are shown in units

of xpe. See main text for model

parameters.
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x2
1;2 ¼

x2
UH

2
6

1

2
ðx4

UH � 4X2
cex

2
pe cos2 hÞ1=2: (7)

Here x1 relates to the þ root and xUH ¼ ðXce þ xpeÞ1=2
is

the upper hybrid frequency, h denotes the angle between the

magnetic field B and the wavevector k.

III. SIMULATION METHOD

Computational study of the nonlinear evolution of an

electron population undergoing anomalous Doppler instabil-

ity, and of the character of the excited fields, is carried out

here using PIC simulations with one spatial and three veloc-

ity coordinates (1D3V). We use the EPOCH PIC code,16

where full ion and electron dynamics of macroparticles with

velocity vðx; tÞ, together with Eðx; v; tÞ and Bðx; v; tÞ, evolve

self-consistently under the Lorentz force law and relativistic

Maxwell equations on staggered grids with periodic bound-

ary conditions. All electron characteristic lengthscales,

including Debye length and gyro-radius, are resolved in

the simulations. The suprathermal electron parallel velocity

distribution in Eq. (A2) is initially modelled to be either flat

as in Eq. (6), or monotonically decreasing, using superposi-

tion of drifted Maxwellians:

FðvjjÞ ¼
1

p1=2vT
e�ðvjj�vDÞ2=v2

T ; (8)

where vD is the drift velocity of the energetic electron popu-

lation, and vT is its thermal spread.

In these simulations, we initialise with a suprathermal

electron tail extending to velocities up to 15vB � 30vB, where

vB represents the thermal velocity of the Maxwellian bulk

electrons. The tail contains a small fraction n of the total

electron population, in the range of 1%–10%. We adopt the

method of particle splitting, such that same number of mac-

roparticles are used in both the bulk and the tail populations

to ensure sufficient statistical sampling of the tail distribu-

tion. The direction of the background magnetic field, and

hence of the electron tail distribution, is oriented at an angle,

h ¼ 45� in our simulations, to the 1D spatial simulation

domain. This allows both kjj and k? components relative to

the magnetic field to be captured in the simulation; finite k?
is an essential condition for the ADI. The parameters includ-

ing temperature, density, and magnetic field strength are

chosen such that the ADI conditions are satisfied. The highly

asymmetric electron tail population has non-zero mean

parallel velocity, so the thermal bulk is slightly shifted such

that the rest frame of the simulations has no net velocity with

respect to the mean velocity of the combined electron

distribution.

One of the main difficulties in reproducing the ADI

using self-consistent simulations with n� 1 is that the ini-

tial growth rates are relatively small compared to the charac-

teristic oscillation frequency, usually of the order of

c ¼ 10�2:5xpe � 10�4xpe. Thus, computationally expensive

long timescale simulations are required. In the present simu-

lations, the ratio Xce=xpe ranges between 0.5 and 2.0. This

range of Xce=xpe is chosen to achieve balance between speed

and resolution of the simulations. We note that Xce=xpe is

equivalent to kD=kL which determines the grid sizes of the

simulations, where kD is the electron Debye length and kL

represents the electron Larmor radius.

The physical parameters used in the simulations, unless

otherwise specified, are jBj ¼ 1:35	 10�7T; ne ¼ 1:0
	105 m�3; TB ¼ 3:0	 105 K; xpe ¼ 1:8	 104 rads�1, and

Xce ¼ 2:36	 104 rads�1. Typically the spatial simulation

domain encompasses 50 000 cells containing 10 	 106 mac-

roparticles. While our main aim in this paper is to understand

the physics of the ADI, the simulation parameters can be

extended to tokamak-like or other plasma conditions, albeit

at some computational cost. The physical parameters corre-

spond to Xce 
 xpe, which is also the case in typical realisa-

tions of ADI in tokamak experiments. However, analytical

estimates of the growth rates (see Appendix and Ref. 10) are

in the limit Xce � xpe. Whilst this limit does not strictly

hold in our simulations, the analysis nonetheless provides an

order of magnitude benchmark.

IV. TIME EVOLUTION OF PARTICLES AND FIELDS
UNDER THE ANOMALOUS DOPPLER INSTABILITY

Figure 2 shows the time sequence of plots of an electron

distribution function evolving from pencil-like to pancake-

like under the action of the ADI. The constant-f contours for

the highest energy component of the electron population, ini-

tially extended in the direction of the parallel velocity axis,

spread rapidly in the perpendicular velocity direction. Owing

to wave excitation, not all the parallel kinetic energy dissi-

pated can be transferred to the perpendicular component.

Hence the spreading of f in (vjj; v?) does not follow the ki-

netic energy conserving path, that is indicated by contours

shown in dashed lines in Fig. 2. Initially, the electron tail

population at higher vjj spreads out into v? at a higher rate

than the tail population at lower vjj, which remains almost

unchanged and can be seen from panels (a)–(e) in Fig. 2.

Modes for which vAD lies at smaller vjj do not arise at early

linear stages, due to Landau damping by the thermal bulk.

Figure 2 also shows local flattening and parallel extension of

the bulk distribution at a few vB, which is a consequence of

Landau damping there of tail-excited waves. We note that

this effect can only be captured quantitatively by self-

consistent nonlinear simulations, and is beyond the reach of

linear or quasilinear analysis.

To characterise the excited waves and how they develop

throughout the ADI, the corresponding structure of the elec-

trostatic field amplitude in (x; k) space is shown in the

sequence of plots in Fig. 3, where each panel corresponds to

the time interval between two snapshots in Fig. 2. Figure 3

enables the identification of the excited modes from their dis-

persion relations. It also shows how the frequencies of the

most strongly driven modes change in time, as the ADI pro-

ceeds through its linear phase into its nonlinear phase. Panels

(a)–(g) of Fig. 3 correspond to the linear phase of ADI, dur-

ing which the intensity of the two forward propagating elec-

trostatic modes, marked as A and B in panels (b)–(d),

increases exponentially. The two backward propagating

modes are Langmuir waves in uniform magnetised plasma,

x1 and x2 from Eq. (7). The characteristic frequencies of the
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two forward propagating modes, A and B in Fig. 3, roughly

correspond to the these Langmuir modes, x1 and x2, but

slightly adjusted by relatively large asymmetric electron tail,

n ¼ 0:08 in this case. An electrostatic mode appears at

approximately x � xpe in the later stages of the linear phase,

marked as C in panels (d)–(g), but vanishes in the nonlinear

phase as shown in panel (h). The physical origin of the fea-

ture at x � xpe in panels (d) to (g) of Fig. 3 is uncertain. It

appears that inverse Landau damping and BGK modes

can be excluded, because the velocity distribution is always

montonically decreasing with respect to vjj and there is no

evidence for particle trapping. This spectral feature of our

simulations may correspond to the observations of fluctuat-

ing narrowband emission at xpe from low density tokamak

plasmas with extended suprathermal electron tails; see, for

example, Refs. 22–26.

FIG. 2. Self-consistent spreading of the high energy tail of an electron distribution undergoing ADI, orientated at 45� to the magnetic field direction. Constant-

f contour plots of the time evolution of an electron distribution with n ¼ 0:08 of the population in an initially flat tail in (vx; vy) phase space; velocities are in

units of thermal velocity. Here Xce=xpe ¼ 1:31, and the tail model in Eq. (6) is used, with vM=vB ¼ 17. The colour density is in logarithmic scale with overlay-

ing dash lines that represent the constant v surfaces with normalised wavenumber kvB=xpe inferred from Eq. (3). Panels (a) to (h) show snapshots from initial

setup, through linear instability, to the nonlinear phase of the ADI: t ¼ (a) 0.0 sce, (b) 37.5 sce, (c) 75.1 sce, (d) 112.6 sce, (e) 150.2 sce, (f) 187.7 sce, (g) 225.3

sce and (h) 375.4 sce, where sce is the electron cyclotron period, sce ¼ 2p=Xce. Panels (a) to (g) are separated by equal time intervals, 37.5 sce, where the last

two panels are separated by a longer time interval, 150.1 sce. This is to reflect the relatively slow evolution of the electron distribution in the later stage of the

simulation. Different phases of the ADI are identified from the electric field amplitude in Fig. 7, where the linear and nonlinear phases correspond to the expo-

nential growth and saturation phases of the electric field amplitude, respectively. The electron distributions are first binned at a resolution of Dv � 0:04vB and

then smoothed using averaging over four nearest neighbours.
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This feature may represent a generalisation, previously

unobserved in simulations to our knowledge, of a wave-

wave resonant form of the anomalous Doppler instability:

we note that this class of instability has been suggested26 as

an explanation for the observations22–25 of fluctuating nar-

rowband emission at xpe from tokamaks. Analytical theory

in this area rests on a simple cold beam plasma model,3,8,26

in which the beam travels relative to the bulk plasma at

velocity v0 parallel to the magnetic field. This differs from

the more realistic but less analytically tractable case, consid-

ered in the present simulations, of an extended monotoni-

cally decreasing suprathermal tail and a thermal bulk

population. At present we can only offer a general plausibil-

ity argument for the wave-wave resonant hypothesis, in

terms of the simple dispersion relation defined by Eq. (5) of

Ref. 8. Resonance between the bulk-supported wave at

x � x2, in the notation of our Eq. (7), and a negative energy

wave supported by the beam at x � kjjv0 � Xce, requires3,8

x2 ¼ kjjv0 � Xce: (9)

It is not known how this simple model carries over to

the case of an extended monotonically decreasing suprather-

mal tail combined with a thermal bulk population. In particu-

lar, the spectrum of additional natural wave modes arising

from the presence of the suprathermal electrons is unknown.

Figure 3 gives characteristic parameter values for the spec-

tral feature at xpe of kvB=xpe � 0:3 with kjj=k ¼ 1=
ffiffiffi
2
p

and

Xce=xpe ¼ 1:31. Using these values in the resonance condi-

tion (9) to infer an effective characteristic velocity v0;eff for

FIG. 3. Time evolution of electrostatic field amplitude, plotted as a function of x; k using a logarithmic scale, which is consistent with the electron distribution

of Fig. 2. The frequency axis is normalised in units of xpe and the wavenumber axis is represented in units of kvB=xpe. Panel (a) is constructed by short-time

Fourier transforming over the time interval between panels (a) and (b) in Fig. 2, and so on successively for panels (b) to (g), while (h) corresponds to the time

interval from 337.9 sce to 375.4 sce. The duration of the Fourier transform time window is the same for all panels in this figure. Panels (a) to (g) correspond to

the linear phase of the ADI, see Fig. 6, whereas (h) corresponds to the nonlinear regime. In the upper left panel, the horizontal lines show natural frequencies

of the plasma: from top, upper hybrid frequency, higher frequency electrostatic normal mode, electron cyclotron frequency, electron plasma frequency, lower

frequency electrostatic normal mode. A, B, and C mark the dominant forward propagating modes in panels (b)-(g). The same colour scale has been adopted in

each plot to assist comparison.
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the tail population yields v0;eff ’ 9:0vB. This value is close to

the mean parallel electron velocity of the tail population in

the distributions plotted in Fig. 2, from which we infer that

wave-wave anomalous Doppler instability may be possible

in our simulations.

The temporal evolution of jEðkÞj for different modes is

shown in Figs. 4 and 5. Figure 4 shows that, by t 
 200sce,

there are two strong enhancements of field energy in (k; t)
space, at kvB=xpe ¼ 0:0760:02 and kvB=xpe ¼ 0:1860:04,

marked in Fig. 5 as A and B, respectively. The first corre-

sponds to the streaming instability with a parallel phase

velocity equivalent to the mean velocity of the electron tail.

Using the spatial domain orientation, here tanh ¼ 1, and

the respective wavenumber k and wave angular frequency

xk ¼ x2 in Eq. (3), we find that the second enhancement

corresponds to a parallel phase velocity vAD whose magni-

tude is comparable to the maximum tail velocity vM ¼ 17vB.

The first two panels in Fig. 5 show the linear phase of ADI,

whereas the later two show the development of the nonlinear

phase.

The early time evolution of the field amplitude, com-

puted from simulations using different percentage n of ener-

getic electrons, yields linear growth rates whose dependence

on k is shown in Fig. 6. To infer linear growth rates from

these PIC simulations, we first identify the linear phase and

then evaluate the growth rates via least squares fitting. The

resulting empirical scaling of linear growth rate with n is

compared in the figure to the analytical scaling (shown in

dashed lines) derived by applying Eqs. (A3)–(A7) to each

initial f. As shown in Fig. 6, the simulation linear growth

rates agree with the analytical expressions, and follow a

decreasing trend with k as Landau damping becomes more

significant as k increases. Figure 7 shows the temporal devel-

opment of a particular k mode for different energetic electron

concentrations n in the range 0.02 to 0.1 with other parame-

ters unchanged. The electric field amplitude grows and

relaxes at a faster rate for higher n. We have also calculated

linear growth rates from PIC simulations with different

alignments of the spatial domain with respect to the mag-

netic field and hence different kjj=k?; tanh ¼ 0:5; 1; 3, as

shown in Fig. 8. Varying the ratio of Xce to xpe has a similar

effect to changing the (k?; kjj) alignment, as the cosh term

implicit in Eq. (3) effectively modifies the magnitude of Xce

in the resonance condition which defines vAD. While the con-

dition Xce � xpe may simplify the problem analytically, the

FIG. 4. Growth of dominant modes in k-space. Contour plot showing the

temporal evolution of the dominant electrostatic component of electric field

amplitude in (k; t) space, identified from Fig. 3, in logarithmic scale. (d)-(h)

label the corresponding times of panels (d)-(h) in Fig. 2. The signal jEðk; tÞj
is smoothed by averaging over four nearest neighbours.

FIG. 5. Four panels showing different

time sections of the unsmoothed

jEðk; tÞj, from top right to top left

(clockwise) showing time intervals

t ¼ 0� 140sce; 140� 280sce; 280

�420sce, and 420� 560sce. The two

dominant modes are marked as A and

B. (b)-(h) label the corresponding

times of panels (b)-(h) in Fig. 2.
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present numerical simulations reveal the existence of insta-

bility in cases where Xce < xpe. Thus Xce > xpe is not a nec-

essary condition for the ADI to occur, and the evolution of

the electron distribution broadly resembles that of the ADI in

Fig. 2.

To quantify the energy transfer between the parallel and

perpendicular direction, we evaluate
Ð

jjj � Ejjdt and
Ð

j? �
E?dt by following the trajectories of the bulk and tail elec-

trons from t¼ 0 up to different times s as shown in Figs. 9

and 10(a), respectively. We define the following quantities

for convenience:

�jjðsÞ ¼
ðs

0

jjjEjjdt; (10)

�?ðsÞ ¼
ðs

0

j?E?dt; (11)

D�jjðs;DsÞ ¼
ðsþDs

s
jjjEjjdt; (12)

D�?ðs;DsÞ ¼
ðsþDs

s
j?E?dt; (13)

where Ds is the time interval between data dumps. The cur-

rent density j here refers to the first order moment of the

electron distribution function. In particular, the parallel and

perpendicular components of the current density of the tail

electron population are given by jjj;tail ¼
Ð1

0
vjjFðvjjÞdvjj and

j?;tail ¼
Ð1

0
v?Fðv?Þdv? which are evaluated using finite

sampling in the velocity phase space of the PIC simulations.

For the tail electrons, �jjðsÞ is negative in the rest frame of

the simulation throughout the simulation, with the most rapid

change during the linear phase of the ADI as shown in

Fig. 10(b), while �?ðsÞ increases. Meanwhile both �jjðsÞ and

�?ðsÞ are positive for the bulk electrons and increase

throughout the simulation, as shown in Fig. 9. The ratio of

�?ðsÞ to �jjðsÞ for tail electrons is also calculated and shown

in the bottom panels of Figs. 10(a) and 10(b) for both the

FIG. 6. Comparison between analytical expressions and the growth rates

inferred from PIC simulations in their linear regime for flat tails with con-

centrations n of 2% (pink), 4% (green), 6% (yellow), 8% (blue), and 10%

(red). The dashed lines represent the corresponding linear analytical growth

rates computed using Eqs. (A3)–(A7). Parameters other than n are the same

for all simulations: an initially flat tail with vM ¼ 5:0	 107ms�1;
Xce=xpe ¼ 1:31.

FIG. 7. Temporal evolution of electric field amplitude jEkðtÞj of a specific

wave-number mode kvB=xpe ¼ 0:20, for different flat tail concentrations n
spanning 2% to 10%. The traces of jEkðtÞj are shifted in time such that

jEkðtÞj for different tail concentrations starts at the same time zero.

FIG. 8. Dependence of linear-stage growth rate on mode propagation angle

with respect to the magnetic field. Coloured points denote linear growth

rates of the most strongly growing k-modes inferred from PIC simulations

for Xce=xpe ¼ 1:31. A flat tail with n ¼ 0:1 and vM � 17vB is used. Dashed

lines show analytical linear growth rates for this model, calculated from

Eqs. (A3)–(A7).

FIG. 9. History of �jj (blue) and �? (black) for bulk electron population,

computed by following the trajectories of all the bulk electrons throughout

the simulation for a flat tail distribution with n ¼ 0:06; Xce=xpe ¼ 1:31 and

vM � 17vB. Both components of j � E are positive throughout the simulation.
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aggregate sums and snapshot values. The ratio approaches a

steady value of xpe=ðxpe þ XceÞ during the linear phase of

the ADI, hence, a constant proportion of parallel energy is

transferred to the perpendicular direction during the linear

phase. Previous analytical work10,12 suggests that this ratio

between the energy transfer is Xce=ðxpe þ XceÞ in the linear

regime of the ADI if the damping terms are neglected. In the

present simulations, additional factors, notably damping and

nonlinear evolution are fully included. As we have shown,

these can become important as electrons evolve away from

the magnetic field direction, and this results in values for

j�?ðsÞ=�jjðsÞj that differ significantly from the linear value.

Figure 11 addresses the dependence of ADI phenomenology

on the value of the ratio Xce=xpe. It shows the time evolution

of �jjðsÞ and �?ðsÞ in four cases. The magnitude of energy

transfer is found to be smaller for larger Xce=xpe, because

fewer electrons satisfy the resonance condition, Eq. (3).

Owing to the potential difficulties in creating a flat-tail

distribution in some laboratory plasma experimental

contexts, the ADI of a monotonically decreasing tail is also

of practical interest, and is investigated here. We construct a

monotonically decreasing tail distribution by combining

populations that have relative parallel drift, as in Eq. (8).

Figure 12 shows an example of the time evolution of the

electron distribution in such a case. In contrast to the initially

flat tail distribution, fan-like spreading out in the high veloc-

ity region of (v?; vjj) phase space is no longer observed. The

electron number density at high velocity parallel to B

declines exponentially in such configurations, leading to a

much slower growth rate.

V. CONCLUSIONS

The anomalous Doppler instability has enduring experi-

mental relevance to magnetically confined fusion plas-

mas,5,8,11,14 and to laboratory beam-plasma studies.17,18,27

Hitherto theoretical interpretation has rested on linear insta-

bility analysis and quasilinear approaches. Recent advances

in computing resources have now placed the ADI within the

scope of contemporary first principles fully self-consistent

kinetic simulation. We have performed, for the first time,

fully kinetic self-consistent PIC simulations of the ADI for

both flat and monotonically decreasing electron tails which

capture both linear and nonlinear phases of the ADI. We

have performed a systematic comparison between new PIC

results and prior analytical theory, and we have established

quantitative agreements between the two, spanning the

FIG. 10. Energy flow in the perpendicular and parallel directions, over time. (a) Top panel shows the history of �jjðsÞ (red) and �?ðsÞ (green) computed by fol-

lowing the trajectories of all the tail electrons throughout the simulation. Bottom panel plots the ratio j�?ðsÞ=�jjðsÞj, the horizontal line marks the value

xpe=ðXce þ xpeÞ. (b) Top panel shows D�jjðs;DsÞ (red) and D�?ðs;DsÞ (green) at different times, where Ds is the time interval between data dumps which in

this case is 3:78sce. Bottom panel shows the ratio jD�?=D�jjj at each data dump, the horizontal line marks the value xpe=ðXce þ xpeÞ. An initially flat tail distri-

bution with n ¼ 0:06; Xce=xpe ¼ 1:31 and vM � 17vB is used.

FIG. 11. Time evolution of perpendicular and parallel components of j � E
of the tail electrons, for different values of Xce=xpe. The history of �jjðsÞ
(solid lines) and �?ðsÞ (dotted lines) is computed by following the trajecto-

ries of all the tail electrons throughout the simulation for a flat tail distribu-

tion with n¼ 0.08, for four different Xce=xpe ratios: 0.83 (yellow), 0.97

(red), 1.31 (blue), and 1.93 (green).

102122-8 Lai, Chapman, and Dendy Phys. Plasmas 20, 102122 (2013)



kinetic evolution of the electron distribution and the proper-

ties of the self-consistently excited wave fields. We

have captured physics beyond the linear phase of the ADI.

Specifically, we have: observed the evolution of the thermal

bulk population of electrons in response to waves excited

by the ADI, which is beyond the reach of analytical theory;

followed the ADI through the linear phase to steady state;

and obtained the directional components of the j � E energy

flow for both bulk and tail electron populations, with damp-

ing and nonlinear effects included. The perpendicular and

parallel components of the j � E energy flow of tail electrons

have been computed for different Xce=xpe ratios and, inter-

estingly, we find that the ADI can arise beyond the previ-

ously expected parameter range, in particular where

Xce < xpe. The simulations also exhibit a spectral feature

which may correspond to the observations of suprathermal

narrowband emission at xpe detected from low density toka-

mak plasmas. Our model results suggest that this may be

compatible with an explanation in terms of wave-wave reso-

nant anomalous Doppler instability.

It is clear from the present work that the ADI joins other

key collective effects involving energetic electrons in toka-

mak plasmas, such as alpha channelling,16 in benefitting from

PIC simulations. There is a firm basis for integrating the ADI

approach presented here into more comprehensive models of

energetic electron phenomenology in magnetically confined

fusion and laboratory plasmas. Predicting the role of ener-

getic electron populations in ITER has been a focus of experi-

mental and theoretical work since the mid-1990s,28,29 and

remains topical.30

ACKNOWLEDGMENTS

This work was part-funded by the RCUK Energy

Programme under Grant EP/I501045 and the European

Communities under the contract of Association between

EURATOM and CCFE. The views and opinions expressed

herein do not necessarily reflect those of the European

Commission. The EPOCH code used in this work was devel-

oped as part of an EPSRC funded project, Grant No.

EP/G054950/1.

APPENDIX: ANALYTICAL LINEAR THEORY

The analytical linear growth rate of electrostatic waves

generated by the ADI is obtained10 from the full electrostatic

dielectric response function given by31

� ¼ 1� xpe

k2

X1
n¼�1

ð1
vjj¼�1

ð1
v?¼0

2pv?dv?dvjj
nXce þ kjjvjj � x

	 nXce

v?

@f

@v?
þ kjj

@f

@vjj

 !
J2

n

k?v?
Xce

� �

�
x2

pi

k

ð1
vi¼�1

dvi

kvi � x
dfi

dvi
: (A1)

Here, (vjj; v?) denote the velocities parallel and perpendicu-

lar to the magnetic field B; f ðvjj; v?Þ is the electron distribu-

tion function and fiðviÞ that of the ions; Xce and xpe are the

electron cyclotron and plasma frequency, respectively; and

(kjj; k?) denote the wavenumber components parallel and

FIG. 12. Snapshots of constant-f con-

tours of an initially monotonically

decreasing electron tail distribution,

modelled by a shifted Maxwellian with

n ¼ 0:08; vT � 9vB; vD ¼ 0:66vB, and

Xce=xpe ¼ 1:31 at different times, (a)

0 sce, (b) 1125.7 sce, (c) 1501.0 sce,

and (d) 2251.5 sce, for a 8% monotoni-

cally decreasing tail. Dashed lines rep-

resent constant wavenumber v contours

with normalised wavenumber kvB=xpe

inferred from Eq. (3).
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perpendicular to the magnetic field. A spatially uniform

equilibrium plasma is assumed. Following,10 we decompose

the electron velocity distribution into a majority thermal

Maxwellian bulk and a much smaller (fraction n� 1) supra-

thermal tail distribution FðvjjÞ:

f ðv?;vjjÞ ¼
1�n

p3=2v3
B

e�v2
?=v

2
B e
�v2
jj=v

2
B þ n

pv2
T?

e�v2
?=v

2
T?FðvjjÞ; (A2)

where vB represents the thermal velocity of the Maxwellian

bulk electrons and vT? is the perpendicular thermal velocity

which is the same as vB in our simulation setup. To simplify,

we consider Xce � xpe, in which case the lower electrostatic

mode x2 dominates and can be approximated as xpekjj=k.

The growth rate of the mode at x1 is less than that at x2 by a

factor Xce=xpe;32 hence, we shall focus on the growth rate of

the lower mode with real frequency x2 ¼ xpekjj=k.

Substituting the above expression into the electrostatic

dielectric response function yields the contributions to linear

growth and damping given by Eqs. (A3) to (A7) of Ref. 10,

reproduced here for convenience:

c
xpe
¼ cAD

xpe
� cLB

xpe
þ cLT

xpe
þ cLI

xpe

� �
; (A3)

cAD

xpe
¼ np1=2 xpe

kvB

� �2

C1ðbTÞ

	 Xce

kvB

vB

vT?

� �2

p1=2vBFðvjjÞ þ
kjj
k

p1=2v2
B

2

dF

dvjj

" #
vjj¼vAD

;

(A4)

cLB

xpe
¼ ð1� nÞp1=2 xpe

kvB

� �3

C0ðbBÞ
kjj
k

e�ð
xpe
kvB
Þ2
; (A5)

cLT

xpe
¼ np1=2 xpe

kvB

� �2

C0ðbTÞ
kjj
k
� p1=2v2

B

2

dF

dvjj

 !
vjj¼xpe=k

;

(A6)

cLI

xpe
¼ p1=2 xpe

kvB

� �3

Z
mi

me

� �1=2 kjj
k

� �2

e
� xpe

kvB

� �2 mi
me

kjj
k

� �2

: (A7)

Here CnðxÞ ¼ e�xInðxÞ, where In denotes the modified

Bessel function of order n; Z is the ion charge state,

bB ¼ k2
?v

2
B=2X2

ce, and bT ¼ ðv2
T?=v

2
BÞbB. Equation (A7)

describes Landau damping on a thermal ion population with

characteristic temperature equal to that of the bulk electrons.

1V. L. Ginzburg, Sov. Phys. Usp. 2, 874 (1960).
2V. L. Ginzburg, Sov. Phys. JETP 35, 92 (1972).
3M. V. Nezlin, Sov. Phys. Usp. 19, 946 (1976).
4V. V. Parail and O. P. Pogutse, Sov. J. Plasma Phys. 2, 126 (1976).
5K. Molvig, M. S. Tekula, and A. Bers, Phys. Rev. Lett. 38, 1404 (1977).
6V. V. Parail and O. P. Pogutse, Nucl. Fusion 18, 303 (1978).
7H. Knoepfel and D. A. Spong, Nucl. Fusion 19, 785 (1979).
8S. C. Liu, V. S. Chan, D. K. Bhadra, and R. W. Harvey, Phys. Rev. Lett.

48, 1479 (1982).
9R. O. Dendy and C. N. Lashmore-Davies, Plasma Phys. Controlled Fusion

26, 1347 (1984).
10R. O. Dendy, C. N. LashmoreDavies, and A. Montes, Phys. Fluids 29,

4040 (1986).
11S. C. Luckhardt, K.-I. Chen, M. J. Mayberry, M. Porkolab, Y. Terumichi,

G. Bekefi, F. S. McDermott, and R. Rohatgi, Phys. Fluids 29, 1985 (1986).
12R. O. Dendy, Phys. Fluids 30, 2438 (1987).
13T. Fulop, G. Pokol, P. Helander, and M. Lisak, Phys. Plasmas 13, 062506

(2006).
14S. Sajjad, X. Gao, B. Ling, S. H. Bhatti, and T. Ang, Phys. Plasmas 17,

042504 (2010).
15Y. M. Wang, X. Gao, L. Ling, Y. Liu, S. B. Zhang, X. Han, A. Ti, E. Z.

Li, and HT-7 Team, Phys. Plasmas 19, 032509 (2012).
16J. W. S. Cook, S. C. Chapman, and R. O. Dendy, Phys. Rev. Lett. 105,

255003 (2010).
17K. Ronald, S. L. McConville, D. C. Speirs, A. D. R. Phelps, C. W.

Robertson, C. G. Whyte, W. He, K. M. Gillespie, A. W. Cross, and R.

Bingham, Phys. Plasmas 15, 056503 (2008).
18K. Ronald, S. L. McConville, D. C. Speirs, A. D. R. Phelps, C. W.

Robertson, C. G. Whyte, W. He, K. M. Gillespie, A. W. Cross, and R.

Bingham, Plasma Sources Sci. Technol. 17, 035011 (2008).
19R. Bingham, R. A. Cairns, I. Vorgul, and V. D. Shapiro, J. Plasma Phys.

76, 539 (2010).
20R. O. Dendy, Plasma Phys. Controlled Fusion 33, 1069 (1991).
21A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol 1: Instabilities of

a Homogeneous Plasma (Springer, 1974).
22A. E. Costley and T. Group, Phys. Rev. Lett. 38, 1477 (1977).
23I. H. Hutchinson and S. E. Kissel, Phys. Fluids 23, 1698 (1980).
24R. F. Gandy and D. H. Yates, Phys. Fluids 28, 1877 (1985).
25R. F. Gandy, I. H. Hutchinson, and D. H. Yates, Phys. Rev. Lett. 54, 800

(1985).
26R. O. Dendy, C. N. Lashmore-Davies, and M. M. Shoucri, Nucl. Fusion

25, 721 (1985).
27R. Bryson, I. Vorgul, R. A. Carins, D. C. Speirs, M. King, K. Ronald, A.

D. R. Phelps, R. Bingham, S. L. McConville, K. M. Gillespie, and A. W.

Cross, See http://ocs.ciemat.es/epsicpp2012pap/pdf/P1.158.pdf for

“Proceedings of the 2012 EPS Conference on Plasma Physics, P1.158.”
28R. Jaspers, N. J. Lopes Cardozo, F. C. Schuller, K. H. Finken, T. Grewe,

and G. Mank, Nucl. Fusion 36, 367 (1996).
29S. Putvinski, P. Barabaschi, N. Fujisawa, N. Putvinskaya, M. N.

Rosenbluth, and J. Wesley, Plasma Phys. Controlled Fusion 39, B157

(1997).
30K. O. Aleynikova, P. B. Aleynikov, S. V. Konovalov, A. A. Teplukhina,

and V. E. Zhogolev, See http://ocs.ciemat.es/EPS2013PAP/pdf/

O5.103.pdf for “Proceedings of the 2013 EPS Conference on Plasma

Physics, O5.103.”
31N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (San

Francisco Press, 1986).
32A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N.

Stepanov, Plasma Electrodynamics, Vol. 2: Non-Linear Theory and
Fluctuations (Pergamon Press, Oxford, 1975).

102122-10 Lai, Chapman, and Dendy Phys. Plasmas 20, 102122 (2013)

http://dx.doi.org/10.1070/PU1960v002n06ABEH003185
http://dx.doi.org/10.1070/PU1976v019n11ABEH005357
http://dx.doi.org/10.1103/PhysRevLett.38.1404
http://dx.doi.org/10.1088/0029-5515/18/3/001
http://dx.doi.org/10.1088/0029-5515/19/6/008
http://dx.doi.org/10.1103/PhysRevLett.48.1479
http://dx.doi.org/10.1088/0741-3335/26/11/009
http://dx.doi.org/10.1063/1.865746
http://dx.doi.org/10.1063/1.865626
http://dx.doi.org/10.1063/1.866135
http://dx.doi.org/10.1063/1.2208327
http://dx.doi.org/10.1063/1.3377770
http://dx.doi.org/10.1063/1.3695093
http://dx.doi.org/10.1103/PhysRevLett.105.255003
http://dx.doi.org/10.1063/1.2856649
http://dx.doi.org/10.1088/0963-0252/17/3/035011
http://dx.doi.org/10.1017/S002237780999078X
http://dx.doi.org/10.1088/0741-3335/33/9/004
http://dx.doi.org/10.1103/PhysRevLett.38.1477
http://dx.doi.org/10.1063/1.863189
http://dx.doi.org/10.1063/1.864931
http://dx.doi.org/10.1103/PhysRevLett.54.800
http://dx.doi.org/10.1088/0029-5515/25/6/007
http://ocs.ciemat.es/epsicpp2012pap/pdf/P1.158.pdf
http://dx.doi.org/10.1088/0029-5515/36/3/I09
http://dx.doi.org/10.1088/0741-3335/39/12B/013
http://ocs.ciemat.es/EPS2013PAP/pdf/O5.103.pdf
http://ocs.ciemat.es/EPS2013PAP/pdf/O5.103.pdf

